Open Access
MATEC Web Conf.
Volume 77, 2016
2016 3rd International Conference on Mechanics and Mechatronics Research (ICMMR 2016)
Article Number 01040
Number of page(s) 4
Section Design and Study on Machinery
Published online 03 October 2016
  1. C.-L. Chu, S.-H. Fan, A novel long-travel piezoelectric-driven linear nanopositioning stage, Precision Engineering, 30 (2006) 85–95. [CrossRef]
  2. P. Gao, S.-M. Swei, Z. Yuan, A new piezodriven precision micropositioning stage utilizing flexure hinges, Nanotechnology, 10 (1999) 394. [CrossRef]
  3. Y. Yong, S. Moheimani, B.J. Kenton, K. Leang, Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues, Review of scientific instruments, 83 (2012) 121101. [CrossRef]
  4. J.H. Kim, S.H. Kim, Y.K. Kwak, Development of a piezoelectric actuator using a three-dimensional bridge-type hinge mechanism, Review of scientific instruments, 74 (2003) 2918–2924. [CrossRef]
  5. S. Choi, S. Han, Y. Han, B. Thompson, A magnification device for precision mechanisms featuring piezoactuators and flexure hinges: Design and experimental validation, Mechanism and Machine Theory, 42 (2007) 1184–1198. [CrossRef]
  6. J.-J. Kim, Y.-M. Choi, D. Ahn, B. Hwang, D.-G. Gweon, J. Jeong, A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism, Mechanism and Machine Theory, 50 (2012) 109–120. [CrossRef]
  7. Q. Xu, Y. Li, Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier, Mechanism and machine theory, 46 (2011) 183–200. [CrossRef]
  8. S. Awtar, A.H. Slocum, Constraint-based design of parallel kinematic XY flexure mechanisms, Journal of Mechanical Design, 129 (2007) 816–830. [CrossRef]
  9. N. Lobontiu, Compliant mechanisms: design of flexure hinges, CRC press, 2010.