Open Access
Issue
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
Article Number 04006
Number of page(s) 9
Section Intelligent Systems and Sensor Technologies for Autonomous Operations
DOI https://doi.org/10.1051/matecconf/202541004006
Published online 24 July 2025
  1. M. Karaim, M. Elsheikh, and A. Noureldin, Multifunctional Operation and Application of GPS. (IntechOpen, London, 2018). [Google Scholar]
  2. A. E. Süzer and H. Oktal, A comparison analysis on forward error correction technology: a future perspective for GNSS. Aircraft Eng. Aerosp. Technol. 95, 8 (2023). [Google Scholar]
  3. M. J. Jiménez-Martínez, M. Farjas-Abadia, and N. Quesada-Olmo, An approach to improving GNSS positioning accuracy using several GNSS devices. Remote Sens. 13, 1149 (2021). [Google Scholar]
  4. X. Li, M. Ge, X. Dai, et al, Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 89, 607–635 (2015). [Google Scholar]
  5. Y. Yuan, N. Wang, Z. Li, and X. Huo, The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation. 66, 55–69 (2019). [Google Scholar]
  6. W. Li, Y. Yuan, and J. Ou, et al, A new global zenith tropospheric delay model IGGtrop for GNSS applications. Chin. Sci. Bull. 57, 2132–2139 (2012). [Google Scholar]
  7. P. Closas, C. Fernandez-Prades, and J. A. Fernandez-Rubio, A Bayesian Approach to Multipath Mitigation in GNSS Receivers. IEEE J. Sel. Top. Signal Process. 3, 695–706 (2009). [Google Scholar]
  8. D. L. M. Warren and J. F. Raquet, Broadcast vs. precise GPS ephemerides: a historical perspective. GPS Solut. 7, 151–156 (2003). [Google Scholar]
  9. N. Wang, Y. Yuan, Z. Li, and X. Huo, Improvement of Klobuchar model for GNSS single-frequency ionospheric delay corrections. Adv. Space Res. 57, 1555–1569 (2016). [Google Scholar]
  10. G. Jee, H.-B. Lee, and Y. H. Ki, et al, Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: Ionospheric perspective. J. Geophys. Res. 115, A10319 (2010). [Google Scholar]
  11. D. Yoon, C. Kee, J. Seo, and B. Park, Position accuracy improvement by implementing the DGNSS-CP algorithm in smartphones. Sensors. 16, 910 (2016). [Google Scholar]
  12. M. Ge, G. Gendt, and M. Rothacher, et al, Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J. Geod. 82, 389–399 (2008). [Google Scholar]
  13. L. T. Hsu, GNSS multipath detection using a machine learning approach, Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, October 2017, pp. 1–6. [Google Scholar]
  14. E. S. Abdolkarimi, M. R. Mosavi, and S. Rafatnia, et al, A hybrid data fusion approach to AI-assisted indirect centralized integrated SINS/GNSS navigation system during GNSS outage. IEEE Access. 9, 100827–100838 (2021). [Google Scholar]
  15. Y. Zhang and L. Wang, A hybrid intelligent algorithm DGP-MLP for GNSS/INS integration during GNSS outages. J. Navig. 72, 375–388 (2019). [Google Scholar]
  16. M. Säily, O. N. Yilmaz, and D. S. Michalopoulos, et al, Positioning technology trends and solutions toward 6G. Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Virtual Conference, September 2021, pp. 1–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.