Open Access
Issue
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
Article Number 03001
Number of page(s) 9
Section Innovative Materials and Chemical Processes for Green Applications
DOI https://doi.org/10.1051/matecconf/202541003001
Published online 24 July 2025
  1. J. Jiangchunyan, N. Nieming, L. Qing, et al., Preparation of graphene/polymer and its application in electrochemical catalysts. Chem. Propellants Polym. Mater. 13, 49-53+57 (2015) [Google Scholar]
  2. C. L. Choy, F. C. Chen, W. H. Luk, Thermal conductivity of oriented crystalline polymers. J. Polym. Sci. Polym. Phys. Ed. 18, 1187-1207 (1980) [Google Scholar]
  3. P. Xu, J. Loomis, R. D. Bradshaw, et al., Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites. Nanotechnology 23, 505713 (2012) [Google Scholar]
  4. T. Luo, J. R. Lloyd, Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: A molecular dynamics study. Adv. Funct. Mater. 22, 2495-2502 (2012) [Google Scholar]
  5. C. Lee, X. Wei, J. W. Kysar, et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008) [Google Scholar]
  6. M. A. Rafiee, J. Rafiee, W. Zhou, et al., Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884-3890 (2009) [Google Scholar]
  7. J. Liang, Y. Xu, Y. Huang, et al., Infrared-triggered actuators from graphene-based nanocomposites. J. Phys. Chem. C 113, 9921-9927 (2009) [Google Scholar]
  8. K. Ai, Y. Liu, L. Lu, et al., A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J. Mater. Chem. 21, 3365-3370 (2011) [Google Scholar]
  9. Y. Wang, Preparation of graphene and its application in polymer composites. (Shanghai Jiao Tong University, Shanghai, 2012) [Google Scholar]
  10. A. Satti, P. Larpent, Y. Gun’ko, Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking. Carbon 48, 3376-3381 (2010) [Google Scholar]
  11. P. Makvandi, M. Ghomi, M. Ashrafizadeh, et al., A review on advances in graphene- derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr. Polym. 250, 116952 (2020) [Google Scholar]
  12. S. Roy, A. Jaiswal, DNA binding and NIR triggered DNA release from quaternary ammonium modified poly(allylamine hydrochloride) functionalized and folic acid conjugated reduced graphene oxide nanocomposites. Int. J. Biol. Macromol. 153, 931-941 (2020) [Google Scholar]
  13. D. Lidonghui, X. Jiang, J. Lijingrui, et al., Preparation and acoustic properties of graphene/polyvinyl chloride/polyurethane layered structural materials. Colloids Polym. 36, 51-54 (2018) [Google Scholar]
  14. Y. Li, Research on electromagnetic shielding and acoustic properties based on graphene nanocomposites and superstructure. (Harbin Institute of Technology, Heilongjiang, 2019) [Google Scholar]
  15. C. Simon-Herrero, N. Peco, A. Romero, et al., PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Appl. Acoust. 156, 40-45 (2019). [Google Scholar]
  16. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al., Electric field effect in atomically thin carbon films. Science 306, 666-669 (2004) [Google Scholar]
  17. L. Ma, K. Chen, D. Mo, et al., Preparation, properties and mechanism of graphene thermal conductive polymer composites. J. Chem. Eng. (S1), 8 (2017). [Google Scholar]
  18. W. Zhouwen, Z. Zhangyating, Intrinsic thermal conductive polymer materials. Synth. Resins Plast. 27, 69-73 (2010) [Google Scholar]
  19. A. Bera, D. Basak, Photoluminescence and photoconductivity of ZnS-coated ZnO nanowires. ACS Appl. Mater. Interfaces 2, 408-412 (2010) [Google Scholar]
  20. T. Shi, Z. Zhang, X. Guo, et al., Ultrafast charge generation enhancement in nanoscale polymer solar cells with DIO additive. Nanomaterials 10, 2174 (2020) [Google Scholar]
  21. Organic solar cells: Materials and prospects of graphene for active and interfacial layers. Crit. Rev. Solid State Mater. Sci. 45, 261-288 (2020) [Google Scholar]
  22. F. Pan, S. Bai, X. Wei, et al., Application of three-dimensional surfactant graphene composite cathode interface material in organic solar cells. Sci. China Mater. 64, 277-287 (2021) [Google Scholar]
  23. P. Liping, L. Yali, L. Liangqianqian, Application progress of graphene and its derivatives in organic solar cells. New Chem. Mater. 48, 7 (2020) [Google Scholar]
  24. X. Li, T. Yang, Y. Yang, et al., Large-area ultrathin graphene films by single-step Marangoni self-assembly for highly sensitive strain sensing application. Adv. Funct. Mater. 26, 1322-1329 (2016) [Google Scholar]
  25. M. Moussa, M. F. El-Kady, H. Wang, et al., High-performance supercapacitors using graphene/polyaniline composites deposited on kitchen sponge. Nanotechnology 26, (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.