Open Access
Issue
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
Article Number 02002
Number of page(s) 7
Section Environmental Protection Strategies for Pollution Control and Climate Resilience
DOI https://doi.org/10.1051/matecconf/202541002002
Published online 24 July 2025
  1. Y. Li, Z. Yao, Advances in solid sorbent technologies for direct air capture. J. of CO₂ Util. 47, 101–110(2024) [Google Scholar]
  2. J. Smith, et al. Advancements in aqueous hydroxide sorbents for direct air capture of CO₂. Envi. Sci. & Tech. 54(12), 7890-7899 (2020) [Google Scholar]
  3. María Erans, Eloy S. Sanz-Pérez, Dawid P. Hanak, Zeynep Clulow, David M. Reiner & Greg A. Mutch, Direct air capture: process technology, techno-economic and socio-political challenges. Energy & Environmental Science. [Google Scholar]
  4. A. Chowdhury, et al. Challenges in the longevity of amine-modified solid sorbents for direct air capture. J. of CO₂ Util. 52, 89–98 (2023) [Google Scholar]
  5. L. Jiang, et al. Integrating renewable energy sources into aqueous hydroxide-based direct air capture systems. Ren. and Sus. Ene. Rev. 119, 109-118 (2020) [Google Scholar]
  6. X. Zhang, et al. Hybrid sorbents for direct air capture: Combining aqueous hydroxides with porous materials. Nature Communications, 13(1), 4567 (2022) [Google Scholar]
  7. M. Erans, E. S. Sanz-Pérez, D. P. Hanak, Z. Clulow, D. M. Reiner, G. A. Mutch, Direct air capture: Process technology, techno-economics, and socio-political challenges. Ene. & Envi. Sci. 15(4), 1360-1405 (2022) [Google Scholar]
  8. M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO₂ direct air capture plants. J. of Cle. Prod. 224, 957–980 (2019) [Google Scholar]
  9. A. J. Cohen, et al. Electrochemical reduction of CO₂ for direct air capture: Mechanisms and materials. Nat. Mat. 18(3), 234-245 (2019) [Google Scholar]
  10. J. M. Garcia, et al. Integration of electrochemical CO₂ reduction with renewable energy sources for direct air capture. Na. Commun. 12(1), 5678 (2021) [Google Scholar]
  11. Y. Lin, et al. Overpotentials in electrochemical CO₂ reduction: Implications for direct air capture. J. of the American Chem. Soc. 142(12), 5678-5686 (2020) [Google Scholar]
  12. A. M. Sierra, et al. Catalyst development for electrochemical CO₂ reduction in direct air capture systems. Nat. Cat. 4(5), 345-356 (2021) [Google Scholar]
  13. J. Lee, S. Kang, Advancements in electrochemical CO₂ reduction catalysts for direct air capture. Nat. Rev. Mater. 7(8), 456-467 (2022) [Google Scholar]
  14. L. Zhao, et al. Algae-based direct air capture systems: A review of current research and applications. Bio. Tech. 271, 1-10 (2019) [Google Scholar]
  15. L. E. Graham, et al. Microalgae for CO₂ capture: Current status and future prospects. Ren. and Sus. Ene. Rev. 119, 109-118 (2020) [Google Scholar]
  16. Y. Liu, et al. Microbial electrochemical systems for CO₂ reduction: Mechanisms and applications. Envi. Sci. & Tech. 54(15), 9234-9243 (2020) [Google Scholar]
  17. M. A. Martin, P. Wright, Challenges in scaling up biological direct air capture systems. Tre. in Bio. 39(5), 456-467 (2021) [Google Scholar]
  18. A. R. Taylor, et al. Optimizing growth conditions for algae-based direct air capture systems. Algal Res. 58, 101-110 (2022) [Google Scholar]
  19. H. Liu, et al. Energy requirements and corrosion challenges in aqueous hydroxide-based direct air capture systems. Ene. & Envi. Sci. 12(8), 2345-2353 (2019) [Google Scholar]
  20. S. Ghosh, L. Zhang, Advancements in membrane materials for CO₂ separation in direct air capture. Sepa. and Pur. Tech. 250, 117-126 (2020) [Google Scholar]
  21. Y. Chen, et al. Graphene oxide membranes for direct air capture: Performance and challenges. Nat. Commun. 12(1), 5678 (2021) [Google Scholar]
  22. Y. Chen, et al. Mitigating corrosion in aqueous hydroxide sorbent systems for CO₂ capture. Corr. in Sci. 174, 108-115 (2021) [Google Scholar]
  23. Wang, Z. et al. Direct air capture of CO₂ in designed metal-organic frameworks at laboratory and pilot scales, Energy & Environmental Science, 2023. [Google Scholar]
  24. M. Johnson, S. Lee, Handling and disposal of alkaline solutions in direct air capture technologies. Journal of Hazardous Materials, 358, 123-130 (2018) [Google Scholar]
  25. R. D. Aines, G. Giordano, Regeneration of amine-based sorbents for CO₂ capture: Challenges and opportunities. Ene. & Envi, Sci. 14(4), 1234-1245 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.