Open Access
Issue |
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 9 | |
Section | Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies | |
DOI | https://doi.org/10.1051/matecconf/202541001033 | |
Published online | 24 July 2025 |
- J. Jeevan, S. Bhanu Pratap,T. Surya Kant, Recent advancements in development of different cathode materials for rechargeable lithium-ion batteries, Journal of Energy Storage, 43, 103112 (2023) [Google Scholar]
- L. Gan. Y. F. Liang. T. T. Feng. H. L. Li. M. Q. Wu. Long-stable lithium metal batteries with a high-performance dual-salt solid polymer electrolyte, Polymer Chemistry, 38, 3883-3892 (2024) [Google Scholar]
- X. Xiu. J. Li. D. Hui. Sizing and Economic Analysis of Lithium-ion Battery Energy Storage System, Advances in Energy Science and Technology, 291, 627-631 (2013) [Google Scholar]
- G. Elkin D, D. Nelson L, L. Adriana C, Energy Management Electronic Device for Islanded Microgrids Based on Renewable Energy Sources and Battery-Based Energy Storage, Ingenieria e investigation, 41, e83905 (2021) [Google Scholar]
- Y. Hua. X. Liu. S. Zhou. Y. Huang. H. Ling. S. Yang, Toward Sustainable Reuse of Retired Lithium-ion Batteries from Electric Vehicles, Resources conservation and recycling, 168, 105249 (2021) [Google Scholar]
- R. Usiskin; Y.X. Lu, J. Popovic, M. Law, P. Balaya, Y. Hu, J. Maier, Fundamentals, status and promise of sodium-based batteries, Nature reviews materials, 6, 1020-1035 (2021) [Google Scholar]
- C. Cheng. C. Chen. S. Chu. H. Hu. T. Yan. X. Xia. X. Feng. H. Guo. D. Sun. J. Wu., Enhancing the Reversibility of Lattice Oxygen Redox Through Modulated Transition Metal-Oxygen Covalency for Layered Battery Electrodes, Advanced Materials, 34, 2201152 (2022) [Google Scholar]
- M. Li. Z. Du. A. Mohammad, B. Ilias, Materials and engineering endeavors towards practical sodium-ion batteries, Energy Storage Materials, 25, 520-536 (2020) [Google Scholar]
- T.-R. Nuria, A. A. Robert, 2021 roadmap for sodium-ion batteries, Journal of Physics- energy, 3, 031503 (2021) [Google Scholar]
- R. Ashish, R. Anthony J. R., H. Richard, M. Seyyed Shayan, L. Alex, M. Francesco, S. Ruth, W. Christopher J., B. Jerry, Commercialisation of high energy density sodium- ion batteries: Faradion’s journey and outlook, Journal of Materials Chemistry A, 9, 8279-8302 (2021) [Google Scholar]
- Y. L. Zhou. Z. Ning. K. Huang. S. Guo. C. Xu. F. Chang. Sustainable energy integration: Enhancing the complementary operation of pumped-storage power and hydropower systems, Renewable & Sustanable Energy Reviews, 210,115175 (2025) [Google Scholar]
- R. Shafiqur, A.-H. Luai., A. Md. Mahbub, Pumped hydro energy storage system: A technological review, Renewable & Sustainable Energy Reviews, 44, 586-598 (2015) [Google Scholar]
- J. P. Hoffstaedt. D. P. K. Truijen. J. Fahlbeck., Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling, Renewable & Sustainable Energy Reviews, 158, 112119 (2022) [Google Scholar]
- P. Ambarish, M. Umakanta, An environmental optimal power flow framework of hybrid power systems with pumped hydro storage, Journal of Cleaner Production, 391, 136087 (2023) [Google Scholar]
- R. Shafiqur, A.-H. Luai M., A. Md. Mahbub, Pumped hydro energy storage system: A technological review, Renewable & Sustainable Energy Reviews, 44, 586-598 (2015) [Google Scholar]
- R. Amirreza , S. M., A. Cyrus, M. Torabi, Thermodynamic and economic investigation of a novel integration of the absorption-recompression refrigeration system with compressed air energy storage (CAES), Energy Conversion and Management, 187, 262-273 (2019) [Google Scholar]
- Z. Tong. Z. Cheng. S. Tong, A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization, Renewable & Sustainable Energy Reviews, 135, 110178 (2021) [Google Scholar]
- X. Zhang. R. Zeng. Q. Deng. H. Li. H. Liu, Energy, exergy and economic analysis of biomass and geothermal energy based CCHP system integrated with compressed air energy storage (CAES), Energy Conversion and Management, 199, 111953 (2019) [Google Scholar]
- B. Elaheh, S. Mohammad, N. Fuzhan, H. Fariborz, Compressed air energy storage in integrated energy systems: A review, Renewable & Sustainable Energy Reviews, 167, 112701 (2022) [Google Scholar]
- X. Zhang. Z. Gao. B. Zhou. H. Guo. Y. Xu. Y. Ding. H., Chen. Advanced Compressed Air Energy Storage Systems: Fundamentals and Applications, Engineering, 34, 246-269 (2024) [Google Scholar]
- A. Olabi. Renewable energy and energy storage systems, Energy, 136, 1-6 (2017) [CrossRef] [Google Scholar]
- M. Alexander, G. Eider, L. Senentxu, F. Arkaitz, de L. Idoia Ruiz, Ionic Liquid-Laden Zn-MOF-74-Based Solid-State Electrolyte for Sodium Batteries, Batteries Basel, 9, 588 (2023) [Google Scholar]
- Y. Guo. S. Wu. Y. He. F. Kang. L. Chen. H. Li. Q. Yang. Solid-state lithium batteries: Safety and prospects, Escience, 2, 138-163 (2022) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.