Open Access
Issue
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
Article Number 01024
Number of page(s) 8
Section Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies
DOI https://doi.org/10.1051/matecconf/202541001024
Published online 24 July 2025
  1. Clean Air Task Force. Decarbonizing Aviation: Enabling Technologies for a Net-Zero Future, n.d, Retrieved on March 15, 2025. Retrieved from: https://www.catf.us/resource/decarbonizing-aviation-enabling-technologies-net-zero- future/ [Google Scholar]
  2. I. D’Adamo, M. Gastaldi, M. Giannini, and A.-S. Nizami, Environmental implications and levelized cost analysis of E-fuel production under photovoltaic energy, direct air capture, and hydrogen. Environmental Research 246, 118163 (2024) [Google Scholar]
  3. 4 AIR. Revolutionizing Aviation: Understanding The Transformative Power of Power- to-Liquid Fuels. n.d. Retrieved on March 20, 2025. Retrieved from: https://www.4air.aero/whitepapers/revolutionizing-aviation-understanding-the- transformative-power-of-power-to-liquid-fuels [Google Scholar]
  4. M. El-Shafie, Hydrogen production by water electrolysis technologies: A review. Results in Engineering 20, 101426 (2023) [Google Scholar]
  5. K. Seymour, M. Held, B. Stolz, G. Georges, and K. Boulouchos, Future costs of power-to-liquid sustainable aviation fuels produced from hybrid solar PV-wind plants in Europe. Sustainable Energy Fuels 8(4), 811–825 (2024) [Google Scholar]
  6. N.W. Stauffer, and M.I. of Technology, A reality check on ‘direct air capture’: Many climate-stabilization plans may be based on questionable assumptions. (n.d.). [Google Scholar]
  7. IEA. Executive summary – Direct Air Capture 2022 – Analysis. n.d. Retrieved on March 28, 2025. Retrieved from https://www.iea.org/reports/direct-air-capture-2022/executive-summary [Google Scholar]
  8. J.P. Ahire, R. Bergman, T. Runge, S.H. Mousavi-Avval, D. Bhattacharyya, T. Brown, and J. Wang, Techno-economic and environmental impacts assessments of sustainable aviation fuel production from forest residues. Sustainable Energy Fuels 8(19), 4602–4616 (2024) [Google Scholar]
  9. J. Zhang, M.S. Webber, Y. Pu, Z. Li, X. Meng, M.L. Stone, B. Wei, X. Wang, S. Yuan, B. Klein, B. Seemala, C.E. Wyman, K.K. Ramasamy, M. Thorson, M.H. Langholtz, J.S. Heyne, A. Koishybay, S. Adhikari, S. Cao, A. Sutton, G.A. Tuskan, Y. Román-Leshkov, A.J. Ragauskas, T. Ling, and B.H. Davison, Sustainable aviation fuels from biomass and biowaste via bio- and chemo-catalytic conversion: catalysis, process challenges, and opportunities. Green Energy & Environment. (2024) [Google Scholar]
  10. T. Mueller, E. Winter, and U. Grote, Economic impacts of power-to-liquid fuels in aviation: A general equilibrium analysis of production and utilization in Germany. Energy Conversion and Management X 23, 100632 (2024) [Google Scholar]
  11. V. Ballal, O. Cavalett, F. Cherubini, and M.D.B. Watanabe, Climate change impacts of e-fuels for aviation in Europe under present-day conditions and future policy scenarios. Fuel 338, 127316 (2023) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.