Open Access
Issue |
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
|
|
---|---|---|
Article Number | 01022 | |
Number of page(s) | 6 | |
Section | Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies | |
DOI | https://doi.org/10.1051/matecconf/202541001022 | |
Published online | 24 July 2025 |
- China Hydrogen Alliance, China Hydrogen Energy and Fuel Cell Industry White Paper (2019-2020) (China Hydrogen Alliance, Beijing, 2020) [Google Scholar]
- C. Koenigsmann, E. Sutter, T. A. Chiesa et al., Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nanowires prepared under ambient, surfactantless conditions. Nano Lett. 12, 2013-2020 (2012) [Google Scholar]
- G. A. Tritsaris, J. K. Norskov, J. Rossmeisl, Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochim. Acta 56, 9783-9788 (2011) [Google Scholar]
- P. Nekooi, M. K. Amini, Effect of support type and synthesis conditions on the oxygen reduction activity of RuxSey catalyst prepared by the microwave polyol method. Electrochim. Acta 55, 3286-3294 (2010) [Google Scholar]
- P. J. Kulesza, K. Miecznikowski, B. Baranowska et al., Tungsten oxide as active matrix for dispersed carbon-supported RuSex nanoparticles: Enhancement of the electrocatalytic oxygen reduction. Electrochem. Commun. 8, 904-908 (2006) [Google Scholar]
- Y. C. Wang, Y. J. Lai, L. Song et al., S-doping of an Fe/N/C ORR catalyst for polymer electrolyte membrane fuel cells with high power density. Angew. Chem. Int. Ed. 54, 9907-9910 (2015) [Google Scholar]
- J. Wang, Z. Q. Huang, W. Liu et al., Design of N coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281-17284 (2017) [Google Scholar]
- X. G. Fu, P. Zamani, J. Y. Choi et al., In situ polymer graphenization ingrained with nanoporosity in a nitrogenous electrocatalyst boosting the performance of polymer- electrolyte-membrane fuel cells. Adv. Mater. 29, 1604456 (2017) [Google Scholar]
- X. Peng, T. J. Omasta, J. M. Roller et al., Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells. Front. Energy 11, 299-309 (2017) [Google Scholar]
- L. Xin, Z. Y. Zhang, Z. C. Wang et al., Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell. Front. Chem. 1, 16 (2013) [Google Scholar]
- Y. Wang, Y. Yang, S. F. Jia et al., Synergistic Mn-Co catalyst outperforms Pt on high- rate oxygen reduction for alkaline polymer electrolyte fuel cells. Nat. Commun. 10, 1506 (2019) [Google Scholar]
- J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu et al., Transition-metal and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion- exchange membrane fuel cells. ACS Catal. 11, 1920-1931 (2021) [Google Scholar]
- S. F. Lu, J. Pan, A. B. Huang et al., Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. U.S.A. 105, 20611-20614 (2008) [Google Scholar]
- W. C. Sheng, H. A. Gasteiger, Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529- B1536 (2010) [Google Scholar]
- P. Quaino, G. Belletti, S. A. Shermukhamedov et al., Understanding the structure and reactivity of NiCu nanoparticles: An atomistic model. Phys. Chem. Chem. Phys. 19, 26812-26820 (2017) [Google Scholar]
- F. L. Yang, X. Bao, P. Li et al., Boosting hydrogen oxidation activity of Ni in alkaline media through oxygen vacancy-rich CeO2/Ni heterostructures. Angew. Chem. Int. Ed. 58, 14179-14183 (2019) [Google Scholar]
- X. Wan, X. F. Liu, Y. C. Li et al., Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high performance proton exchange membrane fuel cells. Nat. Catal. 2, 259-268 (2019) [Google Scholar]
- J. Lilloja, E. Kibena-Poldsepp, A. Sarapuu et al., Transition-metal and nitrogen-doped carbide-derived carbon/carbon nanotube composites as cathode catalysts for anion- exchange membrane fuel cells. ACS Catal. 11, 1920-1931 (2021) [Google Scholar]
- K. P. Gong, F. Du, Z. H. Xia et al., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760-764 (2009) [Google Scholar]
- H. Adabi, A. Shakouri, N. Ul Hassan et al., High performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 6, 834-843 (2021) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.