Open Access
Issue |
MATEC Web Conf.
Volume 410, 2025
2025 3rd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2025)
|
|
---|---|---|
Article Number | 01007 | |
Number of page(s) | 6 | |
Section | Recent Advances in Energy Storage Systems and Sustainable Fuel Technologies | |
DOI | https://doi.org/10.1051/matecconf/202541001007 | |
Published online | 24 July 2025 |
- B. Lee, Review of Recent Advancements in Electrospun Anode Materials to Improve Rechargeable Lithium Battery Performance. Poly. 12(9), 2035(2020) [Google Scholar]
- TO. Ely, D. Kamzabek, and D. Chakraborty, Batteries Safety: Recent Progress and Current Challenges. Front. in Ene. Res. 7, 71(2019) [Google Scholar]
- C. Jin, Brief talk about lithium-ion batteries’ safety and influencing factors, in IOP Conference, IOP Conference Series: Materials Science and Engineering 274, (IOP Publishing, 2017), pp.012152. [Google Scholar]
- J. Chen, Recent Progress in Advanced Materials for Lithium-Ion Batteries. Mater. 6(1), 156-183(2013) [Google Scholar]
- W. Qi, J. Shapter, Q. Wu, T. Yin, G. Gao and D. Cui, Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives. J. of Mater. Chem. A 5, 19521-19540 (2017) [Google Scholar]
- A. Jara, A. Betemariam, G. Woldetinsae and J. Kim, Purification, application and current market trend of natural graphite: A review. Inter. J. of Mining Sci. and Tech. 29, 671-689(2019) [Google Scholar]
- G. Goward, N. Taylor, D. Souza and L. Nazar, The true crystal structure of Li17M4 (M= Ge, Sn, Pb)–revised from Li22M5. J. of Alloys and Compounds. 329, 82-91(2001) [Google Scholar]
- L. Beaulieu, K. Eberman, R. Turner, L. Krause and J. Dahn, Colossal Reversible Volume Changes in Lithium Alloys. Electro. and solid-state let. 4, A137(2001) [Google Scholar]
- N. Wu, Y. Yang, T. Jia, T. Li, F. Li and Z. Wang, Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. J. of Mater. Sci. 55, 6030-6036(2020) [Google Scholar]
- K. Feng, M. Li, W. Liu, A. Kashkooli, X. Xiao, M. Cai and Z. Chen, Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 14, 1702737 (2018) [Google Scholar]
- Z. Feng, W. Peng, Z. Wang, H. Guo, X. Li, G. Yan and J. Wang, Review of silicon- based alloys for lithium-ion battery anodes. International Journal of Minerals, Metallurgy and Materials 28, 1549-1564 (2021) [Google Scholar]
- C. Du, Z. Zhao, H. Liu, F. Song, L. Chen, Y. Cheng and Z. Guo, The Status of Representative Anode Materials for Lithium-Ion Batteries. The Chemical Record 23, e202300004(2023) [Google Scholar]
- X. Liu and J. Huang, In situTEM electrochemistry of anode materials in lithium-ion batteries. Energy & Environmental Science 4, 3844-3860(2011) [Google Scholar]
- Y. Chen, N. Du, H. Zhang and D. Yang, Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries. J. of Alloys and Compounds 622, 966-972(2015) [Google Scholar]
- C. Park, J. Kim, H. Kim and H. Sohn, Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115-3141(2010) [Google Scholar]
- Q. Cheng and Y. Zhang, Multi-Channel Graphite for High-Rate Lithium Ion Battery. J. of the Electro. Soc. 165, A1104 (2018) [Google Scholar]
- Q. Shi, W. Liu, Q. Qu, T. Gao, Y. Wang, G. Liu, ... and H. Zheng, Article Robust solid/electrolyte interphase on graphite anode to suppress lithium inventory loss in lithium-ion batteries. Carbon 111, 291-298 (2017) [Google Scholar]
- Y. Lee, S. Jeghan and G. Lee, Boost charging lithium-ion battery using expanded graphite anode with enhanced performance. Mater. Let. 299, 130077 (2021) [Google Scholar]
- J. Howe, G. Tibbetts, C. Kwag and M. Lake, Heat treating carbon nanofibers for optimal composite performance. J. of Mater. Res. 21, 2646-2652 (2006) [Google Scholar]
- X. Liu, X. Zhu and D. Pan, Solutions for the problems of silicon–carbon anode materials for lithium-ion batteries. Roy. Soc. Open Sci. 5, 172370(2018) [Google Scholar]
- J. Kim, W. Pfleging, R. Kohler, H. Seifert, T. Kim, D.Byun, ... and J. Lee, Three- dimensional silicon/carbon core–shell electrode as an anode material for lithium-ion batteries. J. of Pow. Sour. 279, 13-20 (2015) [Google Scholar]
- T. Zhao, S. She, X. Ji, W. Jin, A. Dang, H. Li, ... and Z. Zhou, In-situ growth amorphous carbon nanotube on silicon particles as lithium-ion battery anode materials. J. of Alloys and Compounds. 708, 500-507 (2017) [Google Scholar]
- I. Kim, G. Blomgren and P. Kumta, Sn/C Composite Anodes for Li-Ion Batteries. Electro. and solid-state Let. 7, A44 (2004) [Google Scholar]
- K. Lee, Y. Jung and S. Oh, Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secondary Batteries. J. of the Ameri. Chem. Soc. 125, 5652-5653(2003) [Google Scholar]
- W. Zhang, J. Hu, Y. Guo, S. Zheng, L. Zhong, W. Song and L. Wan, Tin- Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advan. Mater. 20, 1160-1165(2008) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.