Open Access
Issue |
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 8 | |
Section | Concrete and Admixture Technology 2 | |
DOI | https://doi.org/10.1051/matecconf/202540907004 | |
Published online | 13 June 2025 |
- Dahlhoff, A.; Raupach, M. Electrical Heating of Carbon Textile Reinforced Concrete — Possible Effects on Tensile Load-Bearing Behavior. Applied Sciences 2024, 14, p.4430, doi:https://doi.org/10.3390/app14114430. [CrossRef] [Google Scholar]
- Dahlhoff, A.; Morales Cruz, C.; Raupach, M. Influence of Selected Impregnation Materials on the Tensile Strength for Carbon Textile Reinforced Concrete at Elevated Temperatures. Buildings 2022, 12, p.2177, doi:https://doi.org/10.3390/buildings12122177. [CrossRef] [Google Scholar]
- Morales Cruz, C. Crack-distributing carbon textile reinforced concrete protection layers. Ph.D. Thesis. RWTH Aachen University, Aachen, Germany, 2020. [Google Scholar]
- Tröger, M.S.F.; Große, M.S.S.; Rudloff, M.E.D.- I.T.; Heimbold, I.T. Entwicklung einer elektrischen Kontaktierung für multifunktionale Carbonfaser-Strukturen in Beton. In Proceedings of the 19. AALE-Konferenz. Luxemburg, 08.03.- 10.03.2023, 2023. [Google Scholar]
- Karalis, G.; Zhao, J.; May, M.; Liebscher, M.; Wollny, I.; Dong, W.; Köberle, T.; Tzounis, L.; Kaliske, M.; Mechtcherine, V. Efficient Joule heaters based on mineral-impregnated carbon-fiber reinforcing grids: An experimental and numerical study on a multifunctional concrete structure as an electrothermal device. Carbon 2024, 222, p.118898, doi:https://doi.org/10.1016/j.carbon.2024.118898. [Google Scholar]
- Liu, Y.; Lai, Y.; Ma, D. Melting snow on airport cement concrete pavement with carbon fibre heating wires. Materials Research Innovations 2015, 19, pp.°S10-95, doi:10.1179/1432891715Z.0000000002097. [Google Scholar]
- Junger, D.; Liebscher, M.; Zhao, J.; Mechtcherine, V. Joule heating as a smart approach in enhancing early strength development of mineral-impregnated carbon-fibre composites (MCF) made with geopolymer. Composites Part A: Applied Science and Manufacturing 2022, 153, p.106750, doi:https://doi.org/10.1016/j.compositesa.2021.106750. [CrossRef] [Google Scholar]
- Tuan, C.Y. Roca spur bridge: The implementation of an innovative deicing technology. Journal of Cold Regions Engineering 2008, 22, pp.°1-15, doi:https://doi.org/10.1061/(ASCE)0887-381X(2008)22:1(1). [CrossRef] [Google Scholar]
- 9. Tuan, C.Y. Electrical resistance heating of conductive concrete containing steel fibers and shavings. Materials Journal 2004, 101, pp.°65-71, doi:10.14359/12989. [Google Scholar]
- Chung, D. Self-heating structural materials. Smart materials and structures 2004, 13, p.562, doi:10.1088/0964-1726/13/3/015. [CrossRef] [Google Scholar]
- Tuan, C.Y. Implementation of conductive concrete for deicing (Roca Bridge). Nebraska Department of Transprotation Research Report: Project No. SPR-P1(04) P565 2008, 25. [Google Scholar]
- Tuan, C.Y.; Yehia, S. Evaluation of electrically conductive concrete containing carbon products for deicing. Materials Journal 2004, 101, pp.°287-293, doi:10.14359/13362. [Google Scholar]
- Yehia, S.A.; Tuan, C.Y. Thin conductive concrete overlay for bridge deck deicing and anti-icing. Transportation Research Record 2000, 1698, pp.°45-53, doi:https://doi.org/10.3141/1698-07. [CrossRef] [Google Scholar]
- Yehia, S.; Tuan, C.Y.; Ferdon, D.; Chen, B. Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. Materials Journal 2000, 97, pp.°172-181, doi:10.14359/821. [Google Scholar]
- Yehia, S.A.; Tuan, C.Y. Bridge deck deicing. In Proceedings of the Crossroads 2000 Conference Transportation Conference Proceedings, Iowa, 19-20 August 1998, 1998; pp. 51-57. [Google Scholar]
- Zhao, H.; Wu, Z.; Wang, S.; Zheng, J.; Che, G. Concrete pavement deicing with carbon fiber heating wires. Cold Regions Science and Technology 2011, 65, pp.°413-420, doi:https://doi.org/10.1016/j.coldregions.2010.10.010. [CrossRef] [Google Scholar]
- He, Y.; Zhang, M.; Li, W.; Li, M.; Zhang, S.; Deng, G.; Wang, X. Electric heating curing regimes of temperature self-controlled concrete with nano-carbon black for performance improvement in cold regions. Cement and Concrete Composites 2024, 152, p.105689, doi:https://doi.org/10.1016/j.cemconcomp.2024.105689. [Google Scholar]
- Salim, M.U.; Nishat, F.M.; Oh, T.; Yoo, D.-Y.; Song, Y.; Ozbakkaloglu, T.; Yeon, J.H. Electrical resistivity and joule heating characteristics of cementitious composites incorporating multi-walled carbon nanotubes and carbon fibers. Materials 2022, 15, p.8055, doi:https://doi.org/10.3390/ma15228055. [CrossRef] [Google Scholar]
- Gomis, J.; Galao, O.; Gomis, V.; Zornoza, E.; Garcés, P. Self-heating and deicing conductive cement. Experimental study and modeling. Construction and Building Materials 2015, 75, pp.°442-449, doi:https://doi.org/10.1016/j.conbuildmat.2014.11.042. [CrossRef] [Google Scholar]
- Rao, R.; Wang, H.; Wang, H.; Tuan, C.Y.; Ye, M. Models for estimating the thermal properties of electric heating concrete containing steel fiber and graphite. Composites Part B: Engineering 2019, 164, pp.°116-120, doi:https://doi.org/10.1016/j.compositesb.2018.11.053. [CrossRef] [Google Scholar]
- Schöffel, J.; Abdelkaf, N. Rethinking construction: The market for heatable carbon concrete building components. Fraunhofer-Zentrum für Internationales Management und Wissensökonomie IMW Jahresbericht 2018/2019, pp.°66-67. [Google Scholar]
- C³InteF – Integration der Heizfunktion in Bauelementen aus Carbonbeton Available online: https://www.imw.fraunhofer.de/de/forschung/unter nehmensentwicklung/geschaeftsmodelle/projekte/c-intef.html (accessed on 25.02.2024). [Google Scholar]
- Dahlhoff, A.; Raupach, M. Impact of Electrical Heating on Carbon Textile Reinforced Concrete under Freeze-Thaw Exposure. Journal of Building Engineering 2025, p.112115, doi:https://doi.org/10.1016/j.jobe.2025.112115. [Google Scholar]
- Frenzel, M.; Stelzmann, M.; Söhnchen, A. CUBE – demonstration areas and exhibition objects. Beton‐und Stahlbetonbau 2023, 118, pp.°133-139, doi:10.1002/best.202300010. [CrossRef] [Google Scholar]
- Abdualla, H.; Ceylan, H.; Kim, S.; Gopalakrishnan, K.; Taylor, P.C.; Turkan, Y. System requirements for electrically conductive concrete heated pavements. Transportation Research Record 2016, 2569, pp.°70-79, doi:10.3141/2569-08. [CrossRef] [Google Scholar]
- Xu, S.; Yu, W.; Song, S. Numerical simulation and experimental study on electrothermal properties of carbon/glass fiber hybrid textile reinforced concrete. Science China Technological Sciences 2011, 54, pp.°2421-2428, doi:10.1007/s11431-011-4503-0. [Google Scholar]
- Technical Prdoct Data Sheet - solidian ANTICRACK. Available online: https://www.solidian-kelteks.com/en/products/construction/reinforceme nts/meshes/rigid-meshes/anticrack-detail (accessed on 12.12.2024). [Google Scholar]
- Technisches Poduktdatenblatt - Hitexbau. Available online: https://www.hitexbau.com/menu/products/ (accessed on 17.04.2023). [Google Scholar]
- Dahlhoff, A.; Raupach, M. Crack Analysis of Textile Reinforced Concrete Using Automated Crack Evaluation via Digital Image Correlation. Buildings 2023, 13, p.2984, doi:https://doi.org/10.3390/buildings13122984. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.