Open Access
Issue
MATEC Web Conf.
Volume 409, 2025
Concrete Solutions 2025 – 9th International Conference on Concrete Repair, Durability & Technology
Article Number 03001
Number of page(s) 15
Section Non-Destructive Testing and Diagnosis
DOI https://doi.org/10.1051/matecconf/202540903001
Published online 13 June 2025
  1. Norwegian Concrete Association (NCA/NB), Durable concrete containing alkali reactive aggregates. NB Publication No. 21:1996 (in Norwegian), 5+27 p. including appendices (1996) [Google Scholar]
  2. T. Konow, et al., Alkali reactions in Norwegian dams – Presentation of damages and rehabilitation works on 3 dams. ICOLD Congress, Stavanger, Norway (2015) [Google Scholar]
  3. NVE, Forskrift om sikkerhet ved vassdragsanlegg (damsikkerhetsforskriften). (in Norwegian) (2010) [Google Scholar]
  4. C. Popescu et al., NDT methods and sensors for existing concrete structures. Literature review. SINTEF Report no. 2023:01487, Trondheim, Norway (2024) [Google Scholar]
  5. LCPC, Laboratorie des Pontes et Chaussées Method d’essai no 47 Détermination deI’indice de fissuration d’un parement de béton”. Paris (in French) (1997) [Google Scholar]
  6. B.A. Birkeland, Condition change of concrete dams due to alkali-aggregate reactions. Master Thesis, NTNU (in Norwegian), 59 p +Appendices (2006) [Google Scholar]
  7. P. Gong, et al., ASR damage detection in concrete from ultrasonic methods. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. Vol. 9061. SPIE (2014) [Google Scholar]
  8. L. Khazanovich, et al., Non-destructive analysis of alkali-silica reaction damage in concrete slabs using shear waves. AIP Conference Proceedings. Vol. 1949. No. 1. AIP Publishing (2018) [Google Scholar]
  9. F. Saint-Pierre, P. Rivard, G. Ballivy, Measurement of alkali–silica reaction progression by ultrasonic waves attenuation. Cement and Concrete Research, vol. 37, no. 6, pp. 948–956. (2007) [CrossRef] [Google Scholar]
  10. N. Ezell, et al. A novel use of frequency-banded synthetic aperture focusing technique for reconstructions of alkali-silica reaction in thick-reinforced concrete structures. AIP Conference Proceedings. Vol. 2102. No. 1. AIP Publishing (2019) [Google Scholar]
  11. K.R. Chapagain, W. Bjerke, S. Wagle, T. Melandsø, F. Melandsø, Multilayer piezoelectric PVDF transducers for non-destructive testing of concrete structures. In 2017 IEEE International Ultrasonics Symposium (IUS) (pp. 1-4) (2017) [Google Scholar]
  12. K.R. Chapagain, W. Bjerke, S. Wagle, Ultrasonic measurements of grouted tendon ducts in concrete structures using Elop Insight Scanner. Proceeding of The International Symposium on Non-destructive Testing in Civil Engineering (2022) [Google Scholar]
  13. L.I. Knab, G.V. Blessing, J.R. Clifton, Laboratory evaluation of ultrasonics for crack detection in concrete. Journal Proceedings. Vol. 80. No. 1 (1983) [Google Scholar]
  14. P. Choi, et al., Application of ultrasonic shear-wave tomography to identify horizontal crack or delamination in concrete pavement and bridge. Construction and Building Materials 121: 81-91 (2016) [CrossRef] [Google Scholar]
  15. Elop Technology, Scanning a concrete block with sub-mm delamination using Elop Insight scanner. Demonstrational video. (2023) https://www.youtube.com/watch?v=kl0l_bnlgSQ. [Google Scholar]
  16. Elop Technology, Concrete crack detection and analysis using Elop Insight scanner. Whitepaper. (2023). https://elop.no/concrete-crack-detection-and-analysis/ [Google Scholar]
  17. S.T. Kuchipudi, et al., Imaging of vertical surface-breaking cracks in concrete members using ultrasonic shear wave tomography. Scientific Reports 13.1: 21744 (2023) [CrossRef] [Google Scholar]
  18. M. Sargolzahi, et al., Effectiveness of non-destructive testing for the evaluation of alkali– silica reaction in concrete.” Construction and Building Materials 24.8: 1398-1403 (2010) [Google Scholar]
  19. M. Haugen, Strukturanalyse av betong. Byggdetaljblad 520.032 (in Norwegian) (2017) [Google Scholar]
  20. L.F.M Sanchez, B. Fournier, M. Jolin, M.A.B. Bedoya, Evaluation of the microscopic ASR features through the Damage Rating Index (DRI) for different concrete strengths and aggregate types (fine vs. coarse aggregates). Extended abstract – 14th Euroseminar on Microscopy Applied on Building Materials (EMABM), 10–14 June 2013. Helsingør, Denmark (2013) [Google Scholar]
  21. J. Lindgård, M. Haugen, N. Castro, M.D.A. Thomas, Advantages of using plane polished section analysis as part of microstructural analyses to describe internal cracking due to alkali‐silica reactions. In: T. Drimalas, J.H. Ideker, B. Fournier (Eds.) 14th International Conference on Alkali‐ Aggregate Reactions in Concrete (ICAAR), Austin, Texas (2012) [Google Scholar]
  22. L.F.M Sanchez, B. Fournier, M. Jolin, J. Bastien, Evaluation of the Stiffness Damage Test (SDT) as a tool for assessing damage in concrete due to alkali-silica reaction (ASR): Input parameters and variability of the test responses. Construction and Building Materials 77 (2015) 20–32 [CrossRef] [Google Scholar]
  23. K. Stemland, Experimental and structural basis for analysis and assessment of concrete structures exposed to Alkali-Silica reactions. PhD thesis at NTNU, Trondheim, Norway (2024) [Google Scholar]
  24. S. Larsen, J. Lindgård, E. Thorenfeldt, E. Rodum, M. Haugen, Experiences from extensive condition survey and FEM-analyses of two Norwegian concrete dams with ASR. Proceedings of the 13th International Conference on Alkali-Aggregate Reaction (ICAAR). Trondheim (Norway), p. 10 (2008) [Google Scholar]
  25. M. Champagne, J. Lindgård, B. Fournier, B. Bissonnette, C Duchesne, Profiling the internal damage within an ASR-affected dam with the Damage Rating Index (DRI). Proceedings of the 15th International Conference on Alkali-Aggregate Reaction (ICAAR). Lisbon, Portugal (2022) [Google Scholar]
  26. G. Plusquellec, M.R. Geiker, J. Lindgård, K. De Weerdt, Determining the free alkali metal content in concrete – case study of an ASR-affected dam. Cement and Concrete Research 105: 111-125 (2018) https://doi.org/10.1016/j.cemconres.2018.01.003. [Google Scholar]
  27. J. Lindgård, et al. ASR-Performance testing: Main findings in the Norwegian COIN Project. Proceedings of 15th International conference on alkali-aggregate reaction (ICAAR), Austin, Texas (2016) [Google Scholar]
  28. L.F.M. Sanchez, B. Fournier, M. Jolin, D. Mitchell, J. Bastien, Overall assessment of Alkali-Aggregate Reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures. Cement and concrete research, 93, pp.17-31 (2017) [Google Scholar]
  29. H. Sun, et al., Long-term ultrasonic monitoring of concrete affected by alkali-silica reaction. Structural Health Monitoring 23.1: 162-174 (2024). doi:10.1177/14759217231169000 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.