Open Access
Issue |
MATEC Web Conf.
Volume 407, 2025
19e Congrès de la Société Française de Génie des Procédés (SFGP2024)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 11 | |
Section | Agro & bio-ressources / Agro & Bio Resources | |
DOI | https://doi.org/10.1051/matecconf/202540701001 | |
Published online | 04 March 2025 |
- Directorate-General for Communication (European Commission) Circular Economy Action Plan: For a Cleaner and More Competitive Europe; Publications Office of the European Union, 2020; ISBN 978-92-76-19070-7. [Google Scholar]
- Biomasse énergie | Ministère du Partenariat avec les territoires et de la Décentralisation Ministère de la Transition écologique, de l’Énergie, du Climat et de la Prévention des risques Ministère du Logement et de la Rénovation urbaine Available online: https://www.ecologie.gouv.fr/politiques-publiques/biomasse-energie (accessed on 14 January 2025). [Google Scholar]
- Vuppaladadiyam, A.K., Vuppaladadiyam, S.S.V., Awasthi, A., Sahoo, A., Rehman, S., Pant, K.K., Murugavelh, S., Huang, Q., Anthony, E., Fennel, P.; et al. Biomass Pyrolysis: A Review on Recent Advancements and Green Hydrogen Production. Bioresource Technology 2022, 364, 128087, DOI: 10.1016/j.biortech.2022.128087. [CrossRef] [Google Scholar]
- Mohan, D., Pittman, C.U., Jr., Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889, DOI: 10.1021/ef0502397. [CrossRef] [Google Scholar]
- Fermoso, J., Pizarro, P., Coronado, J.M., Serrano, D.P. Advanced Biofuels Production by Upgrading of Pyrolysis Bio-Oil. WIREs Energy and Environment 2017, 6, e245, DOI: 10.1002/wene.245. [CrossRef] [Google Scholar]
- Mohabeer, C., Reyes, L., Abdelouahed, L., Marcotte, S., Buvat, J.-C., Tidahy, L., Abi-Aad, E., Taouk, B. Production of Liquid Bio-Fuel from Catalytic de-Oxygenation: Pyrolysis of Beech Wood and Flax Shives. Journal of Fuel Chemistry and Technology 2019, 47, 153–166, DOI: 10.1016/S1872-5813(19)30008-8. [CrossRef] [Google Scholar]
- Mohabeer, C., Reyes, L., Abdelouahed, L., Marcotte, S., Taouk, B. Investigating Catalytic DeOxygenation of Cellulose, Xylan and Lignin Bio-Oils Using HZSM-5 and Fe-HZSM-5. Journal of Analytical and Applied Pyrolysis 2019, 137, 118–127, DOI: 10.1016/j.jaap.2018.11.016. [CrossRef] [Google Scholar]
- Wang, J., Jabbour, M., Abdelouahed, L., Mezghich, S., Estel, L., Thomas, K., Taouk, B. Catalytic Upgrading of Bio-Oil: Hydrodeoxygenation Study of Acetone as Molecule Model of Ketones. The Canadian Journal of Chemical Engineering 2021, 99, 1082–1093, DOI: 10.1002/cjce.23909. [CrossRef] [Google Scholar]
- Machado, H., Cristino, A.F., Orišková, S.; Galhano dos Santos, R. Bio-Oil: The Next-Generation Source of Chemicals. Reactions 2022, 3, 118–137, DOI: 10.3390/reactions3010009. [CrossRef] [Google Scholar]
- Hung, N.V., Mohabeer, C., Vaccaro, M., Marcotte, S., Agasse-Peulon, V., Abdelouahed, L., Taouk, B., Cardinael, P. Development of Two-dimensional Gas Chromatography (GC×GC) Coupled with Orbitrap-technology-based Mass Spectrometry: Interest in the Identification of Biofuel Composition. Journal of Mass Spectrometry 2020, 55, DOI: 10.1002/jms.4495. [Google Scholar]
- Michailof, C.M., Kalogiannis, K.G., Sfetsas, T., Patiaka, D.T., Lappas, A.A. Advanced Analytical Techniques for Bio-Oil Characterization. WIREs Energy and Environment 2016, 5, 614–639, DOI: 10.1002/wene.208. [CrossRef] [Google Scholar]
- Staš, M., Kubička, D., Chudoba, J., Pospíšil, M. Overview of Analytical Methods Used for Chemical Characterization of Pyrolysis Bio-Oil. Energy Fuels 2014, 28, 385–402, DOI: 10.1021/ef402047y. [CrossRef] [Google Scholar]
- Staš, M., Chudoba, J., Kubička, D., BlaŽek, J., Pospíšil, M. Petroleomic Characterization of Pyrolysis Bio-Oils: A Review. Energy Fuels 2017, 31, 10283–10299, DOI: 10.1021/acs.energyfuels.7b00826. [CrossRef] [Google Scholar]
- Marshall, A.G., Rodgers, R.P. Petroleomics: The next Grand Challenge for Chemical Analysis. Accounts of Chemical Research 2004, 37, 53–59, DOI: 10.1021/ar020177t. [CrossRef] [Google Scholar]
- Katano, K., Suzuki, T., Matsumoto, K., Kato, H., Norinaga, K. New Data Processing Method for Heavy Oil Components Analyzed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of the Japan Petroleum Institute 2023, 66, 101–108, DOI: 10.1627/jpi.66.101. [CrossRef] [Google Scholar]
- Smith, D.F., Podgorski, D.C., Rodgers, R.P., Blakney, G.T., Hendrickson, C.L. 21 Tesla FT-ICR Mass Spectrometer for Ultrahigh-Resolution Analysis of Complex Organic Mixtures. Analytical Chemistry 2018, 90, 2041–2047, DOI: 10.1021/acs.analchem.7b04159. [CrossRef] [Google Scholar]
- Jiang, S.-F., Sheng, G.-P., Jiang, H. Advances in the Characterization Methods of Biomass Pyrolysis Products. ACS Sustainable Chemistry & Engineering 2019, 7, 12639–12655, DOI: 10.1021/acssuschemeng.9b00868. [CrossRef] [Google Scholar]
- Smith, E.A., Thompson, C., Lee, Y.J. Petroleomic Characterization of Bio-Oil Aging Using Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry. Bulletin of the Korean Chemical Society 2014, 35, 811–814, DOI: 10.5012/bkcs.2014.35.3.811. [CrossRef] [Google Scholar]
- He, Z., Guo, M., Sleighter, R.L., Zhang, H., Chanel, F., Hatcher, P.G. Characterization of Defatted Cottonseed Meal-Derived Pyrolysis Bio-Oil by Ultrahigh Resolution Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of Analytical and Applied Pyrolysis 2018, 136, 96–106, DOI: 10.1016/j.jaap.2018.10.018. [CrossRef] [Google Scholar]
- Kekäläinen, T., Venäläinen, T., Jänis, J. Characterization of Birch Wood Pyrolysis Oils by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Insights into Thermochemical Conversion. Energy Fuels 2014, 28, 4596–4602, DOI: 10.1021/ef500849z. [CrossRef] [Google Scholar]
- Stankovikj, F., McDonald, A.G., Helms, G.L., Olarte, M.V., Garcia-Perez, M. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils. Energy Fuels 2017, 31, 1650–1664, DOI: 10.1021/acs.energyfuels.6b02950. [CrossRef] [Google Scholar]
- Jarvis, J.M., McKenna, A.M., Hilten, R.N., Das, K.C., Rodgers, R.P., Marshall, A.G. Characterization of Pine Pellet and Peanut Hull Pyrolysis Bio-Oils by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2012, 26, 3810–3815, DOI: 10.1021/ef300385f. [CrossRef] [Google Scholar]
- Liu, Y., Shi, Q., Zhang, Y., He, Y., Chung, K.H., Zhao, S., Xu, C. Characterization of Red Pine Pyrolysis Bio-Oil by Gas Chromatography-Mass Spectrometry and Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2012, 26, 4532–4539, DOI: 10.1021/ef300501t. [CrossRef] [Google Scholar]
- Buss, W., Hertzog, J., Pietrzyk, J., Carré, V., Mackay, C.L., Aubriet, F., Mašek, O. Comparison of Pyrolysis Liquids from Continuous and Batch Biochar Production—Influence of Feedstock Evidenced by FTICR MS. Energies 2020, 14, 9, DOI: 10.3390/en14010009. [CrossRef] [Google Scholar]
- Miettinen, I., Mäkinen, M., Vilppo, T., Jänis, J. Compositional Characterization of Phase- Separated Pine Wood Slow Pyrolysis Oil by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2015, 29, 1758–1765, DOI: 10.1021/ef5025966. [CrossRef] [Google Scholar]
- Mase, C., Moulian, R., Lazzari, E., Garnier, C., Piparo, M., Hubert-Roux, M., Afonso, C., Dayton, D.C., Barrère-Mangote, C., Giusti, P. Comparison of Lignocellulosic-Based Biomass Pyrolysis Processes by Multi-Scale Molecular Characterization. Journal of Analytical and Applied Pyrolysis 2024, 177, 106354, DOI: 10.1016/j.jaap.2024.106354. [CrossRef] [Google Scholar]
- Ware, R.L., Rowland, S.M., Rodgers, R.P., Marshall, A.G. Advanced Chemical Characterization of Pyrolysis Oils from Landfill Waste, Recycled Plastics, and Forestry Residue. Energy Fuels 2017, 31, 8210–8216, DOI: 10.1021/acs.energyfuels.7b00865. [CrossRef] [Google Scholar]
- Chacón-Patiño, M.L., Mase, C., Maillard, J.F., Barrère-Mangote, C., Dayton, D.C., Afonso, C., Giusti, P., Rodgers, R.P. Petroleomics Approach to Investigate the Composition of Upgrading Products from Pyrolysis Bio-Oils as Determined by High-Field FT-ICR MS. Energy Fuels 2023, 37, 16612–16628, DOI: 10.1021/acs.energyfuels.3c02599. [CrossRef] [Google Scholar]
- Olcese, R., Carré, V., Aubriet, F., Dufour, A. Selectivity of Bio-Oils Catalytic Hydrotreatment Assessed by Petroleomic and GC*GC/MS-FID Analysis. Energy Fuels 2013, 27, 2135–2145, DOI: 10.1021/ef302145g. [CrossRef] [Google Scholar]
- Koike, N., Hosokai, S., Takagaki, A., Nishimura, S., Kikuchi, R., Ebitani, K., Suzuki, Y., Oyama, S.T. Upgrading of Pyrolysis Bio-Oil Using Nickel Phosphide Catalysts. Journal of Catalysis 2016, 333, 115–126, DOI: 10.1016/j.jcat.2015.10.022. [CrossRef] [Google Scholar]
- Tessarolo, N.S., Silva, R.V.S., Vanini, G., Casilli, A., Ximenes, V.L., Mendes, F.L.; de Rezende Pinho, A.; Romão, W.; de Castro, E.V.R.; Kaiser, C.R.; et al. Characterization of Thermal and Catalytic Pyrolysis Bio-Oils by High-Resolution Techniques: 1H NMR, GC×GC-TOFMS and FT-ICR MS. Journal of Analytical and Applied Pyrolysis 2016, 117, 257–267, DOI: 10.1016/j.jaap.2015.11.007. [CrossRef] [Google Scholar]
- Hertzog, J., Carré, V., Jia, L., Mackay, C.L., Pinard, L., Dufour, A., Mašek, O., Aubriet, F. Catalytic Fast Pyrolysis of Biomass over Microporous and Hierarchical Zeolites: Characterization of Heavy Products. ACS Sustainable Chemistry & Engineering 2018, 6, 4717–4728, DOI: 10.1021/acssuschemeng.7b03837. [CrossRef] [Google Scholar]
- Hertzog, J., Mase, C., Hubert-Roux, M., Afonso, C., Giusti, P., Barrère-Mangote, C. Characterization of Heavy Products from Lignocellulosic Biomass Pyrolysis by Chromatography and Fourier Transform Mass Spectrometry: A Review. Energy Fuels 2021, 35, 17979–18007, DOI: 10.1021/acs.energyfuels.1c02098. [CrossRef] [Google Scholar]
- Cole, D.P., Smith, E.A., Dalluge, D., Wilson, D.M., Heaton, E.A., Brown, R.C., Lee, Y.J. Molecular Characterization of Nitrogen-Containing Species in Switchgrass Bio-Oils at Various Harvest Times. Fuel 2013, 111, 718–726, DOI: 10.1016/j.fuel.2013.04.064. [CrossRef] [Google Scholar]
- Santos, J., Santos, L., Silva, F., Eberlin, M., Wisniewski Jr, A. Comprehensive Characterization of Second-Generation Biofuel from Invasive Freshwater Plants by FT-ICR MS. BioEnergy Research 2015, 8, 1–8, DOI: 10.1007/s12155-015-9650-x. [Google Scholar]
- Hertzog, J., Carré, V., Le Brech, Y., Mackay, C.L., Dufour, A., Mašek, O., Aubriet, F. Combination of Electrospray Ionization, Atmospheric Pressure Photoionization and Laser Desorption Ionization Fourier Transform Ion Cyclotronic Resonance Mass Spectrometry for the Investigation of Complex Mixtures - Application to the Petroleomic Analysis of Bio-Oils. Analytica Chimica Acta 2017, 969, 26–34, DOI: 10.1016/j.aca.2017.03.022. [CrossRef] [Google Scholar]
- Hertzog, J., Tews, I., Mood, S.H., Aubriet, F., Carré, V., Garcia-Perez, M. Performance of Catalytic Wet Oxidation on Thermochemical Aqueous Effluents Assessed by FT-ICR MS. Journal of Environmental Chemical Engineering 2024, 12, 113721, DOI: 10.1016/j.jece.2024.113721. [CrossRef] [Google Scholar]
- Jaafar, Y., Arias, G., Abdelouahed, L., El Samrani, A.; Elhage, R.; Taouk, B. Upgrading Pyrolytic Oil via Catalytic Co-Pyrolysis of Beechwood and Polystyrene. Molecules 2023, 28, 5758, DOI: 10.3390/molecules28155758. [CrossRef] [Google Scholar]
- Reyes, L., Abdelouahed, L., Campusano, B., Buvat, J.-C., Taouk, B. Exergetic Study of Beech Wood Gasification in Fluidized Bed Reactor Using CO2 or Steam as Gasification Agents. Fuel Processing Technology 2021, 213, 106664, DOI: 10.1016/j.fuproc.2020.106664. [CrossRef] [Google Scholar]
- Reyes, L., Abdelouahed, L., Mohabeer, C., Buvat, J.-C., Taouk, B. Energetic and Exergetic Study of the Pyrolysis of Lignocellulosic Biomasses, Cellulose, Hemicellulose and Lignin. Energy Conversion and Management 2021, 244, 114459, DOI: 10.1016/j.enconman.2021.114459. [CrossRef] [Google Scholar]
- Sueur, M., Maillard, J.F., Lacroix-Andrivet, O., Rüger, C.P., Giusti, P., Lavanant, H., Afonso, C. PyC2MC: An Open-Source Software Solution for Visualization and Treatment of HighResolution Mass Spectrometry Data. Journal of the American Society for Mass Spectrometry 2023, 34, 617–626, DOI: 10.1021/jasms.2c00323. [CrossRef] [Google Scholar]
- Mase, C., Maillard, J.F., Marcuz, S., Hubert-Roux, M., Afonso, C., Giusti, P. Contribution of LDI and MALDI for the Characterization of a Lignocellulosic-Based Pyrolysis Bio-Oil. Journal of the American Society for Mass Spectrometry 2023, 34, 1789–1797, DOI: 10.1021/jasms.3c00197. [CrossRef] [Google Scholar]
- Ghislain, T., Faure, P., Michels, R. Detection and Monitoring of PAH and Oxy-PAHs by High Resolution Mass Spectrometry: Comparison of ESI, APCI and APPI Source Detection. Journal of The American Society for Mass Spectrometry 2012, DOI: 10.1007/s13361-011-0304-8. [Google Scholar]
- Sanguineti, M.M., Hourani, N., Witt, M., Sarathy, S.M., Thomsen, L., Kuhnert, N. Analysis of Impact of Temperature and Saltwater on Nannochloropsis Salina Bio-Oil Production by Ultra High Resolution APCI FT-ICR MS. Algal Research 2015, 9, 227–235, DOI: 10.1016/j.algal.2015.02.026. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.