Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 10001
Number of page(s) 15
Section Pattern Recognition
DOI https://doi.org/10.1051/matecconf/202440610001
Published online 09 December 2024
  1. V. B. Shankar and S. Thangam, Distracted Driver Posture Recognition, 2022 IEEE 3rd Global Conference for Advancement in Technology, GCAT 2022, 1–8, (2022) [Google Scholar]
  2. C. Yan, F. Coenen, and B. Zhang, Driving posture recognition by convolutional neural networks, IET Computer Vision, 10, 2, pp. 103–114 (2016) [CrossRef] [Google Scholar]
  3. F. Zandamela, T. Ratshidaho, F. Nicolls, and G. Stoltz, Cross-dataset performance evaluation of deep learning distracted driver detection algorithms, in Proceedings of 2022 Rapid Product Development Association of South Africa – Robotics and Mechatronics – Pattern Recognition Association of South Africa – South African Advanced Materials Initiative, RAPDASA-RobMech-PRASA-CoSAAMI, 9-11 November 2022, Somerset West, South Africa (2022) [Google Scholar]
  4. H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N. Moustafa, Driver distraction identification with an ensemble of convolutional neural networks, J Adv Transp, 2019, (2019) [CrossRef] [Google Scholar]
  5. C. Huang, X. Wang, J. Cao, S. Wang, Y. Zhang, A hybrid CNN framework for behavior detection of distracted drivers, IEEE Access, 8, pp. 109335–109349 (2020) [CrossRef] [Google Scholar]
  6. C. Ou and F. Karray, Enhancing Driver Distraction Recognition Using Generative Adversarial Networks, IEEE Transactions on Intelligent Vehicles, 5, 3, pp. 385–396 (2020) [CrossRef] [Google Scholar]
  7. J. Cronje and A. P. Engelbrecht, Training convolutional neural networks with class based data augmentation for detecting distracted drivers, in Proceedings of the 9th International Conference on Computer and Automation Engineering, ICCAE '17, pp. 126–130 (2017) [Google Scholar]
  8. M. R. Arefin, F. Makhmudkhujaev, O. Chae, and J. Kim, Aggregating CNN and HOG features for Real-Time Distracted Driver Detection, in IEEE International Conference on Consumer Electronics, ICCE, pp. 12–14 (2019) [Google Scholar]
  9. C. Streiffer, R. Raghavendra, T. Benson, and M. Srivatsa, DarNet: A deep learning solution for distracted driving detection, in Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference: Industrial track, 11-15 December 2017, Las Vegas, Nevada, United States (2017) [Google Scholar]
  10. J. Mafeni Mase, P. Chapman, G. P. Figueredo, and M. Torres Torres, A Hybrid Deep Learning Approach for Driver Distraction Detection, in 2020 International Conference on Information and Communication Technology Convergence, ICTC, 21-23 October 2020, Jeju, South Korea (2020) [Google Scholar]
  11. F. Nel and M. Ngxande, Driver Activity Recognition through Deep Learning, in Proceedings of 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa, SAUPEC/RobMech/PRASA, 27-29 January 2021, Potchefstroom, South Africa (2021) [Google Scholar]
  12. M. Cetinkaya and T. Acarman, Driver activity recognition using deep learning and human pose estimation, in 2021 International Conference on Innovations in Intelligent Systems and Applications, INISTA, 25-27 August 2021, Kocaeli, Turkey (2021) [Google Scholar]
  13. A. Ezzouhri, Z. Charouh, M. Ghogho, and Z. Guennoun, Robust Deep Learning- Based Driver Distraction Detection and Classification, IEEE Access, 9, pp. 168080–168092, (2021) [CrossRef] [Google Scholar]
  14. M. Leekha, M. Goswami, R. R. Shah, Y. Yin, and R. Zimmermann, Are you paying attention? Detecting distracted driving in real-time, in 2019 IEEE Fifth International Conference on Multimedia Big Data, BigMM, 11-13 September 2019, Singapore, (2019) [Google Scholar]
  15. B. T. Dong and H. Y. Lin, An On-board Monitoring System for Driving Fatigue and Distraction Detection, in 2021 22nd IEEE International Conference on Industrial Technology, ICIT, 10-12 March 2021, Valencia, Spain (2021) [Google Scholar]
  16. F. Sajid, A. R. Javed, A. Basharat, N. Kryvinska, A. Afzal, and M. Rizwan, An efficient deep learning framework for distracted driver detection, IEEE Access, 9, pp. 169270–169280 (2021) [CrossRef] [Google Scholar]
  17. F. Zandamela, F. Nicolls, D. Kunene, and G. Stoltz, Enhancing distracted driver detection with human body activity recognition using deep learning, South African Journal of Industrial Engineering, 34, 4 (2023) [CrossRef] [Google Scholar]
  18. C. Duan, Z. Liu, J. Xia, M. Zhang, J. Liao, and L. Cao, Enhancing Cross-Dataset Performance of Distracted Driving Detection with Score Softmax Classifier and Dynamic Gaussian Smoothing Supervision, IEEE Trans on Intelligent Vehicles, (2024) [Google Scholar]
  19. B. Baheti, S. Talbar, and S. Gajre, Towards Computationally Efficient and Realtime Distracted Driver Detection with MobileVGG Network, IEEE Trans on Intelligent Vehicles, 5, 4 (2020) [Google Scholar]
  20. D. Liu, T. Yamasaki, Y. Wang, K. Mase, and J. Kato, Toward Extremely Lightweight Distracted Driver Recognition with Distillation-Based Neural Architecture Search and Knowledge Transfer, IEEE Trans on Intelligent Transportation Systems, 24, 1 (2023) [CrossRef] [Google Scholar]
  21. S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, IEEE Trans Pattern Anal Mach Intell, 39, 6 (2017) [Google Scholar]
  22. J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 21-26 July 2017 Honolulu, HI, United States (2017) [Google Scholar]
  23. J. Redmon and A. Farhadi, YOLOv3: An incremental improvement, ArXiv, (2018) [Google Scholar]
  24. A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding. Yolov10: Real- time end-to-end object detection, arXiv preprint arXiv:2405.14458 (2024). [Google Scholar]
  25. C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information, arXiv (2024) [Google Scholar]
  26. C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, YOLOv7: Trainable bag-of - freebies sets new state-of -the-art for real-time object detectors, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 18-22 June 2023, Vancouver, Canada (2023) [Google Scholar]
  27. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real- time object detection, in Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 27-30 June, Las Vegas, Nevada (2016) [Google Scholar]
  28. M. Tan, R. Pang, Q. V. Le, EfficientDet: Scalable and efficient object detection, in Proceedings of the IEEE Computer Vision and Pattern Recognition, CVPR, June 16-18, (2020) [Google Scholar]
  29. P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A Review of Yolo Algorithm Developments, Procedia Comput Sci, 199 (2021) [Google Scholar]
  30. D. Chen, Z. Wang, J. Wang, L. Shi, M. Zhang, and Y. Zhou, Detection of distracted driving via edge artificial intelligence, Computers and Electrical Engineering, October, 111 (2023) [Google Scholar]
  31. C. Lou, X. Nie, Research on Lightweight-Based Algorithm for Detecting Distracted Driving Behaviour, Electronics (Switzerland), 12, 22 (2023) [Google Scholar]
  32. J. Cao, W. Bao, H. Shang, M. Yuan, Q. Cheng, GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small Object Detection, Remote Sens (Basel), 15, 20 (2023) [Google Scholar]
  33. M. Hu, Z. Li, J. Yu, X. Wan, H. Tan, Z. Lin, Efficient-Lightweight YOLO: Improving Small Object Detection in YOLO for Aerial Images, Sensors, 23, 14, July (2023) [Google Scholar]
  34. I. C. Duta, L. Liu, F. Zhu, and L. Shao, Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition, Arxiv (2020) [Google Scholar]
  35. J. Wang et al., 100-Driver: A Large-Scale, Diverse Dataset for Distracted Driver Classification, IEEE Transactions on Intelligent Transportation Systems, 24, 7 (2023) [Google Scholar]
  36. F. Zandamela, “Enhancing Cross-Dataset Performance in Distracted Driver Detection using Body Part Activity Recognition,” Thesis, University of Cape Town, 2024. Accessed: Jun. 30, 2024. [Online]. Available: http://www.dip.ee.uct.ac.za/publications/theses/MScFrankZ.pdf [Google Scholar]
  37. “State Farm Distracted Driver Detection | Kaggle.” Accessed: Mar. 28, 2022. [Online]. Available: https://www.kaggle.com/c/state-farm-distracted-driver- detection [Google Scholar]
  38. Y. Sasaki, “The truth of the F-measure,” 2007. Accessed: Jun. 30, 2024. [Online]. Available: https://www. cs. odu. edu/mukka/cs795sum09dm/Lecturenotes/Day3/F- measure-YS-26Oct07. pdf [Google Scholar]
  39. P. Padilla, S. L. Netto, and E. A. B. da Silva, A Survey on Performance Metrics for Object-Detection Algorithms, in 2020 International Conference on Systems, Signals and Image Processing, IWSSIP, 01-03 July 2020, Niteroi, Brazil (2020) [Google Scholar]
  40. M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique, Hardware and Software Optimizations for Accelerating Deep Neural Networks: Survey of Current Trends, Challenges, and the Road Ahead, IEEE Access, 8 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.