Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 07015
Number of page(s) 12
Section AM Material and Part Characterisation
DOI https://doi.org/10.1051/matecconf/202440607015
Published online 09 December 2024
  1. A. Carrozza, A. Aversa, P. Fino, M. Lombardi, A study on the microstructure and mechanical properties of the Ti-6Al-2Sn-4Zr-6Mo alloy produced via Laser Powder Bed Fusion, J Alloys Compd 870 (2021) 159329. [CrossRef] [Google Scholar]
  2. D.F. Louw, P.G.H. Pistorius, The effect of scan speed and hatch distance on prior- beta grain size in laser powder bed fused Ti-6Al-4V, The International J. Adv. Manuf. Technology 103 (2019) 2277–2286. [CrossRef] [Google Scholar]
  3. C. Qian, K. Zhang, J. Zhu, Y. Liu, Y. Liu, J. Liu, J. Liu, Y. Yang, H. Wang, Effect of processing parameters on the defects, microstructure, and property evaluation of Ti-6Al-4V titanium alloy processed by laser powder bed fusion, AIP Adv 14 (2024). [Google Scholar]
  4. P.V. Cobbinah, S. Matsunaga, Y. Toda, R. Ozasa, M. Okugawa, T. Ishimoto, Y. Liu, Y. Koizumi, P. Wang, T. Nakano, Peculiar microstructural evolution and hardness variation depending on laser powder bed fusion-manufacturing condition in Ti–6Al–2Sn–4Zr–6Mo, Smart Materials in Manufacturing 2 (2024) 100050. [CrossRef] [Google Scholar]
  5. S. Kalpakjian, S. Schmid, Manufacturing Processes for Engineering Materials, (n.d.). [Google Scholar]
  6. V. Madhavadas, D. Srivastava, U. Chadha, S.A. Raj, M.T.H. Sultan, F.S. Shahar, A.U.M. Shah, A review on metal additive manufacturing for intricately shaped aerospace components, CIRP J Manuf Sci Technol 39 (2022) 18–36. [CrossRef] [Google Scholar]
  7. I. Yadroitsev, I. Yadroitsava, A. Du Plessis, E. MacDonald, Fundamentals of laser powder bed fusion of metals, Elsevier, 2021. [Google Scholar]
  8. F.H. Froes, B. Dutta, The additive manufacturing (AM) of titanium alloys, Trans Tech Publ, 2014. [Google Scholar]
  9. D.K. Do, P. Li, The effect of laser energy input on the microstructure, physical and mechanical properties of Ti-6Al-4V alloys by selective laser melting, Virtual Phys Prototyp 11 (2016) 41–47. [CrossRef] [Google Scholar]
  10. Q. Luo, L. Yin, T.W. Simpson, A.M. Beese, Effect of processing parameters on pore structures, grain features, and mechanical properties in Ti-6Al-4V by laser powder bed fusion, Addit Manuf 56 (2022) 102915. https://doi.org/https://doi.org/10.1016/j.addma.2022.102915. [Google Scholar]
  11. J.J.S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting, Progress in Additive Manufacturing 2 (2017) 157–167. [CrossRef] [Google Scholar]
  12. M.A. Buhairi, F.M. Foudzi, F.I. Jamhari, A.B. Sulong, N.A.M. Radzuan, N. Muhamad, I.F. Mohamed, A.H. Azman, W.S.W. Harun, M.S.H. Al-Furjan, Review on volumetric energy density: influence on morphology and mechanical properties of Ti6Al4V manufactured via laser powder bed fusion, Progress in Additive Manufacturing 8 (2023) 265–283. [CrossRef] [Google Scholar]
  13. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.-P. Kruth, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater 58 (2010) 3303–3312. [CrossRef] [Google Scholar]
  14. A. Sola, A. Nouri, Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, J Adv Manuf Process 1 (2019) e10021. [CrossRef] [Google Scholar]
  15. S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Mater Des 164 (2019) 107552. [CrossRef] [Google Scholar]
  16. M.J. Donachie, Titanium: a technical guide, ASM international, 2000. [CrossRef] [Google Scholar]
  17. S. Cao, Y. Zou, C.V.S. Lim, X. Wu, Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property, Light: Advanced Manufacturing 2 (2021) 313–332. [Google Scholar]
  18. C. Leyens, M. Peters, Titanium and titanium alloys: fundamentals and applications, Wiley Online Library, 2006. [Google Scholar]
  19. P. Pushp, S.M. Dasharath, C. Arati, Classification and applications of titanium and its alloys, Mater Today Proc 54 (2022) 537–542. https://doi.org/https://doi.org/10.1016/j.matpr.2022.01.008. [CrossRef] [Google Scholar]
  20. B. Sefer, Oxidation and alpha–case phenomena in titanium alloys used in aerospace industry: Ti–6Al–2Sn–4Zr–2Mo and Ti–6Al–4V, 2014. [Google Scholar]
  21. J. Ju, R. Zan, Z. Shen, C. Wang, P. Peng, J. Wang, B. Sun, B. Xiao, Q. Li, S. Liu, Remarkable bioactivity, bio-tribological, antibacterial, and anti-corrosion properties in a Ti-6Al-4V-xCu alloy by laser powder bed fusion for superior biomedical implant applications, Chemical Engineering Journal 471 (2023) 144656. [CrossRef] [Google Scholar]
  22. H.J. Vergara-Hernández, L. Olmos, V.M. Solorio, D. Bouvard, J. Villalobos-Brito, J. Chávez, O. Jimenez, Powder metallurgy fabrication and characterization of Ti6Al4V/xCu alloys for biomedical applications, Metals (Basel) 13 (2023) 888. [CrossRef] [Google Scholar]
  23. C.M. Cepeda-Jiménez, F. Potenza, E. Magalini, V. Luchin, A. Molinari, M.T. Pérez-Prado, Effect of energy density on the microstructure and texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion, Mater Charact 163 (2020) 110238. [CrossRef] [Google Scholar]
  24. G.M. Ter Haar, T.H. Becker, The influence of microstructural texture and prior beta grain recrystallisation on the deformation behaviour of laser powder bed fusion produced Ti–6Al–4V, Materials Science and Engineering: A 814 (2021) 141185. [CrossRef] [Google Scholar]
  25. J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density, Rapid Prototyp J (2017). [Google Scholar]
  26. J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang, X. Zeng, Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting, Mater Des 108 (2016) 308–318. https://doi.org/https://doi.org/10.1016/j.matdes.2016.06.117. [CrossRef] [Google Scholar]
  27. X. Lu, C. Shu, Z. Zheng, X. Shu, S. Chen, K. Essa, Z. Li, H. Xu, Effects of L-PBF Scanning Strategy and Sloping Angle on the Process Properties of TC11 Titanium Alloy, Metals (Basel) 13 (2023) 983. [CrossRef] [Google Scholar]
  28. C.J. Barnard, Development of Ti alloys for LPBF with the Use of D-optimal design, 2022. [Google Scholar]
  29. L. Xie, C. Liu, Y. Song, H. Guo, Z. Wang, L. Hua, L. Wang, L.-C. Zhang, Evaluation of microstructure variation of TC11 alloy after electroshocking treatment, Journal of Materials Research and Technology 9 (2020) 2455–2466. [CrossRef] [Google Scholar]
  30. F. Trevisan, F. Calignano, A. Aversa, G. Marchese, M. Lombardi, S. Biamino, D. Ugues, D. Manfredi, Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications, J Appl Biomater Funct Mater 16 (2018) 57–67. [Google Scholar]
  31. O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, T. Nakano, Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy, Acta Mater 212 (2021) 116876. [CrossRef] [Google Scholar]
  32. Y. Chong, T. Bhattacharjee, J. Yi, A. Shibata, N. Tsuji, Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT), Scr Mater 138 (2017) 66–70. https://doi.org/https://doi.org/10.1016/j.scriptamat.2017.05.038. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.