Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 07001
Number of page(s) 11
Section AM Material and Part Characterisation
DOI https://doi.org/10.1051/matecconf/202440607001
Published online 09 December 2024
  1. M. Telford, The case for bulk metallic glass, Materials Today 7 (2004) 36–43. https://doi.org/10.1016/S1369-7021(04)00124-5. [Google Scholar]
  2. J.J. Kruzic, Bulk Metallic Glasses as Structural Materials: A Review, Adv. Eng. Mater. 18 (2016) 1308–1331. https://doi.org/10.1002/adem.201600066. [Google Scholar]
  3. J. Schroers, Processing of bulk metallic glass, Advanced materials 22 (2010) 1566–1597. https://doi.org/10.1002/adma.200902776. [Google Scholar]
  4. N. Sohrabi, J. Jhabvala, R.E. Logé, Additive Manufacturing of Bulk Metallic Glasses—Process, Challenges and Properties: A Review, Metals 11 (2021) 1279. https://doi.org/10.3390/met11081279. [Google Scholar]
  5. J. Wegner, M. Frey, M. Piechotta, N. Neuber, B. Adam, S. Platt, L. Ruschel, N. Schnell, S.S. Riegler, H.-R. Jiang, G. Witt, R. Busch, S. Kleszczynski, Influence of powder characteristics on the structural and the mechanical properties of additively manufactured Zr-based bulk metallic glass, Materials & Design 209 (2021) 109976. https://doi.org/10.1016/j.matdes.2021.109976. [CrossRef] [Google Scholar]
  6. J. Heinrich, Massivglasbildende metallische Legierungen als Konstruktionswerkstoff Materialoptimierung und Technologieentwicklung zur Herstellung und Verarbeitung, Universität des Saarlandes, 2012. [Google Scholar]
  7. P. Bordeenithikasem, M. Stolpe, A. Elsen, D.C. Hofmann, Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion, Additive Manufacturing 21 (2018) 312–317. https://doi.org/10.1016/j.addma.2018.03.023. [CrossRef] [Google Scholar]
  8. L. Deng, K. Kosiba, R. Limbach, L. Wondraczek, U. Kühn, S. Pauly, Plastic deformation of a Zr-based bulk metallic glass fabricated by selective laser melting, Journal of Materials Science & Technology 60 (2021) 139–146. https://doi.org/10.1016/j.jmst.2020.06.007. [CrossRef] [Google Scholar]
  9. B. Li, V. Yakubov, K. Nomoto, S.P. Ringer, B. Gludovatz, X. Li, J.J. Kruzic, Superior mechanical properties of a Zr-based bulk metallic glass via laser powder bed fusion process control, Acta Materialia 266 (2024) 119685. https://doi.org/10.1016/j.actamat.2024.119685. [CrossRef] [Google Scholar]
  10. J. Wegner, L. Bruckhaus, M.A. Schroer, M. Rayer, H. Schoenrath, S. Kleszczynski, Zr-based bulk metallic glasses in PBF-LB/M: near-polished surface quality in the as- built state, Prog Addit Manuf (2024). https://doi.org/10.1007/s40964-024-00667-0. [Google Scholar]
  11. Y.J. Huang, J. Shen, J.F. Sun, 2007. Bulk metallic glasses: Smaller is softer. Appl. Phys. Lett. 90, 081919. https://doi.org/10.1063/1.2696502. [CrossRef] [Google Scholar]
  12. G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: the smaller the better, Adv. Mater. 23 (2011) 461–476. https://doi.org/10.1002/adma.201002148. [CrossRef] [Google Scholar]
  13. A.H. Brothers, D.C. Dunand, Ductile Bulk Metallic Glass Foams, Adv. Mater. 17 (2005) 484–486. https://doi.org/10.1002/adma.200400897. [CrossRef] [Google Scholar]
  14. B. Sarac, J. Schroers, From brittle to ductile: Density optimization for Zr-BMG cellular structures, Scripta Materialia 68 (2013) 921–924. https://doi.org/10.1016/j.scriptamat.2013.02.030. [CrossRef] [Google Scholar]
  15. C. Yang, C. Zhang, W. Xing, L. Liu, 3D printing of Zr-based bulk metallic glasses with complex geometries and enhanced catalytic properties, Intermetallics 94 (2018) 22–28. https://doi.org/10.1016/j.intermet.2017.12.018. [CrossRef] [Google Scholar]
  16. C. Yang, Di Ouyang, L. Zhang, Y. Zhang, X. Tong, H. Ke, K.C. Chan, W. Wang, The enhancement of damage tolerance of 3D-printed high strength architected metallic glasses by unit cell shape design, Additive Manufacturing 85 (2024) 104125. https://doi.org/10.1016/j.addma.2024.104125. [CrossRef] [Google Scholar]
  17. S. Sohn, N. Liu, G.H. Yoo, A. Ochiai, J. Chen, C. Levitt, G. Liu, S.C. Schroers, E.T. Lund, E.S. Park, J. Schroers, A framework for plasticity in metallic glasses, Materialia 31 (2023) 101876. https://doi.org/10.1016/j.mtla.2023.101876. [CrossRef] [Google Scholar]
  18. A. Argon, Plastic deformation in metallic glasses, Acta Metallurgica 27 (1979) 47–58. https://doi.org/10.1016/0001-6160(79)90055-5. [CrossRef] [Google Scholar]
  19. M.L. Falk, J.S. Langer, Dynamics of viscoplastic deformation in amorphous solids, Phys. Rev. E 57 (1998) 7192–7205. https://doi.org/10.1103/PhysRevE.57.7192. [CrossRef] [Google Scholar]
  20. F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica 25 (1977) 407–415. https://doi.org/10.1016/0001- 6160(77)90232-2. [CrossRef] [Google Scholar]
  21. Y. Wu, Di Cao, Y. Yao, G. Zhang, J. Wang, L. Liu, F. Li, H. Fan, X. Liu, H. Wang, X. Wang, H. Zhu, S. Jiang, P. Kontis, D. Raabe, B. Gault, Z. Lu, Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing, Nat Commun 12 (2021) 6582. https://doi.org/10.1038/s41467-021-26858-9. [CrossRef] [Google Scholar]
  22. J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, J. Eckert, “Work-Hardenable” ductile bulk metallic glass, Phys. Rev. Lett. 94 (2005) 205501. https://doi.org/10.1103/PhysRevLett.94.205501. [CrossRef] [Google Scholar]
  23. Heraeus Amorphous Alloy Technologies, Heraeus AMLOY-Zr01 Data Sheet. https://www.heraeus.com/media/media/group/media_group/products/amorphous_met als/datasheets_1/Datasheet_AMLOY-ZR01~2.pdf (accessed 3 October 2021). [Google Scholar]
  24. M. Frey, J. Wegner, N. Neuber, B. Reiplinger, B. Bochtler, B. Adam, L. Ruschel, S.S. Riegler, H.-R. Jiang, S. Kleszczynski, G. Witt, R. Busch, Thermoplastic forming of additively manufactured Zr-based bulk metallic glass: A processing route for surface finishing of complex structures, Materials & Design 198 (2021) 109368. https://doi.org/10.1016/j.matdes.2020.109368. [CrossRef] [Google Scholar]
  25. M. Frey, J. Wegner, E.S. Barreto, L. Ruschel, N. Neuber, B. Adam, S.S. Riegler, H.- R. Jiang, G. Witt, N. Ellendt, V. Uhlenwinkel, S. Kleszczynski, R. Busch, Laser powder bed fusion of Cu-Ti-Zr-Ni bulk metallic glasses in the Vit101 alloy system, Additive Manufacturing 66 (2023) 103467. https://doi.org/10.1016/j.addma.2023.103467. [CrossRef] [Google Scholar]
  26. J.J. Marattukalam, V. Pacheco, D. Karlsson, L. Riekehr, J. Lindwall, F. Forsberg, U. Jansson, M. Sahlberg, B. Hjörvarsson, Development of process parameters for selective laser melting of a Zr-based bulk metallic glass, Additive Manufacturing 33 (2020) 101124. https://doi.org/10.1016/j.addma.2020.101124. [CrossRef] [Google Scholar]
  27. N. Sohrabi, T. Ivas, J. Jhabvala, J.E. Schawe, J.F. Löffler, H. Ghasemi-Tabasi, R.E. Logé, Quantitative prediction of crystallization in laser powder bed fusion of a Zr- based bulk metallic glass with high oxygen content, Materials & Design 239 (2024) 112744. https://doi.org/10.1016/j.matdes.2024.112744. [CrossRef] [Google Scholar]
  28. V. Crupi, E. Kara, G. Epasto, E. Guglielmino, H. Aykul, Static behavior of lattice structures produced via direct metal laser sintering technology, Materials & Design 135 (2017) 246–256. https://doi.org/10.1016/j.matdes.2017.09.003. [CrossRef] [Google Scholar]
  29. M. Alaña, A. Cutolo, S. Ruiz de Galarreta, B. van Hooreweder, Influence of relative density on quasi-static and fatigue failure of lattice structures in Ti6Al4V produced by laser powder bed fusion, Sci Rep 11 (2021) 19314. https://doi.org/10.1038/s41598- 021-98631-3. [CrossRef] [Google Scholar]
  30. S.Y. Choy, C.-N. Sun, K.F. Leong, J. Wei, Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density, Additive Manufacturing 16 (2017) 213–224. https://doi.org/10.1016/j.addma.2017.06.012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.