Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 06008 | |
Number of page(s) | 12 | |
Section | Computational & Data-driven Modelling | |
DOI | https://doi.org/10.1051/matecconf/202440606008 | |
Published online | 09 December 2024 |
- J. Hu, H. Shen, M. Jiang, H. Gong, H. Xiao, Z. Liu, G. Sun and X. Zu “A DFT study of hydrogen storage in high-entropy alloy TiZrHfScMo,” Nanomaterials, vol. 9, no. 3, pp. 1–12, 2019, doi: 10.3390/nano9030461. [Google Scholar]
- C. Zhang, A. Song, Y. Yuan, Y. Wu, P. Zhang, Z. Lu and X. Song, “Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy,” Int. J. Hydrogen Energy, vol. 45, no. 8, pp. 5367–5374, 2020, doi: 10.1016/j.ijhydene.2019.05.214. [CrossRef] [Google Scholar]
- A. Keith, C. Zlotea, and P. Á. Szilágyi, “Perspective of interstitial hydrides of high- entropy alloys for vehicular hydrogen storage,” Int. J. Hydrogen Energy, vol. 52, no. xxxx, pp. 531–546, 2024, doi: 10.1016/j.ijhydene.2023.01.141. [CrossRef] [Google Scholar]
- T. P. Yadav, A. Kumar, S. K. Verma, and N. K. Mukhopadhyay, “High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects,” Trans. Indian Natl. Acad. Eng., vol. 7, no. 1, pp. 147–156, 2022, doi: 10.1007/s41403-021-00316-w. [CrossRef] [Google Scholar]
- R. Floriano, G. Zepon, K. Edalati, G.L.B.G. Fontana, A. Mohammadi, Z. Ma, H.W. Li and R.J. Contieri, “Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy,” Int. J. Hydrogen Energy, vol. 46, no. 46, pp. 23757–23766, 2021, doi: 10.1016/j.ijhydene.2021.04.181. [CrossRef] [Google Scholar]
- F. Yang, J. Wang, Y. Zhang, Z. Wu, Z. Zhang, F. Zhao, J. Huot, J.G. Novaković and N. Novaković, “Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review,” Int. J. Hydrogen Energy, vol. 47, no. 21, pp. 11236–11249, 2022, doi: 10.1016/j.ijhydene.2022.01.141. [CrossRef] [Google Scholar]
- S. Karpov, “Application of High-Entropy Alloys in Hydrogen Storage Technology,” Probl. At. Sci. Technol., vol. 2024, no. 2, pp. 48–61, 2024, doi: 10.46813/2024-150- 048. [Google Scholar]
- J. Wang, H. Kwon, H. S. Kim, and B. J. Lee, “A neural network model for high entropy alloy design,” npj Comput. Mater., vol. 9, no. 1, pp. 1–13, 2023, doi: 10.1038/s41524-023-01010-x. [CrossRef] [Google Scholar]
- R. Feng, P. K. Liaw, M. C. Gao, and M. Widom, “First-principles prediction of high- entropy-alloy stability,” npj Comput. Mater., vol. 3, no. 1, pp. 1–6, 2017, doi: 10.1038/s41524-017-0049-4. [CrossRef] [Google Scholar]
- F. Marques, M. Balcerzak, F. Winkelmann, G. Zepon, and M. Felderhoff, “Review and outlook on high-entropy alloys for hydrogen storage,” Energy Environ. Sci., vol. 14, no. 10, pp. 5191–5227, 2021, doi: 10.1039/d1ee01543e. [CrossRef] [Google Scholar]
- O. A. Pedroso, W. J. Botta, and G. Zepon, “An open-source code to calculate pressure-composition-temperature diagrams of multicomponent alloys for hydrogen storage,” Int. J. Hydrogen Energy, vol. 7, 2022, doi: 10.1016/j.ijhydene.2022.07.179. [Google Scholar]
- B. Cheng, Y. Li, X. Li, H. Ke, L. Wang, T. Cao, D. Wan, B. Wang and Y. Xue, “Solid-State Hydrogen Storage Properties of Ti–V–Nb–Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni),” Acta Metall. Sin. (English Lett., vol. 36, no. 7, pp. 1113–1122, 2023, doi: 10.1007/s40195-022-01403- 9 [CrossRef] [Google Scholar]
- M. H. Tsai and J. W. Yeh, “High-entropy alloys: A critical review,” Mater. Res. Lett., vol. 2, no. 3, pp. 107–123, 2014, doi: 10.1080/21663831.2014.912690. [CrossRef] [Google Scholar]
- L. Luo, L. Chen, L. Li, S. Liu and Y. Li, “High-entropy alloys for solid hydrogen storage: a review,” Int. J. Hydrogen Energy, vol. 50, no. xxxx, pp. 406–430, 2024, doi: 10.1016/j.ijhydene.2023.07.146. [CrossRef] [Google Scholar]
- S. Guo and C. T. Liu, “Phase stability in high entropy alloys: Formation of solid- solution phase or amorphous phase,” Prog. Nat. Sci. Mater. Int., vol. 21, no. 6, pp. 433–446, 2011, doi: 10.1016/S1002-0071(12)60080-X. [CrossRef] [Google Scholar]
- C. Zlotea, A. Bouzidi, J. Montero, G. Ek, and M. Sahlberg, “Compositional effects on the hydrogen storage properties in a series of refractory high entropy alloys,” Front. Energy Res., vol. 10, no. October, pp. 1–10, 2022, doi: 10.3389/fenrg.2022.991447. [CrossRef] [Google Scholar]
- M. Sahlberg, D. Karlsson, C. Zlotea, and U. Jansson, “Superior hydrogen storage in high entropy alloys,” Sci. Rep., vol. 6, pp. 1–6, 2016, doi: 10.1038/srep36770. [CrossRef] [Google Scholar]
- N. Yurchenko, N. Stepanov, and G. Salishchev, “Laves-phase formation criterion for high-entropy alloys,” Mater. Sci. Technol. (United Kingdom), vol. 33, no. 1, pp. 17–22, 2017, doi: 10.1080/02670836.2016.1153277. [CrossRef] [Google Scholar]
- P. Edalati, R. Floriano, A. Mohammadi, Y. Li, G. Zepon, H.W. Li, K. Edalati, “Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi,” Scr. Mater., vol. 178, pp. 387–390, 2020, doi: 10.1016/j.scriptamat.2019.12.009. [CrossRef] [Google Scholar]
- I. Kunce, M. Polanski, and J. Bystrzycki, “Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS),” Int. J. Hydrogen Energy, vol. 39, no. 18, pp. 9904–9910, 2014, doi: 10.1016/j.ijhydene.2014.02.067. [CrossRef] [Google Scholar]
- Y. F. Kao, S.K. Chen, J.H. Sheu, J.T. Lin, W.E. Lin and J.W. Yeh, “Hydrogen storage properties of multi-principal-component CoFeMnTi xVyZrz alloys,” Int. J. Hydrogen Energy, vol. 35, no. 17, pp. 9046–9059, 2010, doi: 10.1016/j.ijhydene.2010.06.012. [CrossRef] [Google Scholar]
- J. Liang, G. Li, X. Ding, Z. Wen, T. Zhang, Y. Li and Y. Qu, “Formation of Zr-rich BCC phase and its relation on the hydrogen storage properties of TiVNbZr high entropy alloy,” Int. J. Hydrogen Energy, vol. 48, no. 86, pp. 33610–33619, 2023, doi: 10.1016/j.ijhydene.2023.05.100. [CrossRef] [Google Scholar]
- B. Cheng, Y. Li, X. Li, H. Ke, L. Wang, T. Cao, D. Wan, B. Wang and Y. Xue, “Solid-State Hydrogen Storage Properties of Ti–V–Nb–Cr High-Entropy Alloys and the Associated Effects of Transitional Metals (M = Mn, Fe, Ni),” Acta Metall. Sin. (English Lett., vol. 36, no. 7, pp. 1113–1122, 2023, doi: 10.1007/s40195-022-01403- 9. [CrossRef] [Google Scholar]
- R. Li, L. Xie, W. Y. Wang, P. K. Liaw, and Y. Zhang, “High-Throughput Calculations for High-Entropy Alloys: A Brief Review,” Front. Mater., vol. 7, no. September, pp. 1–12, 2020, doi: 10.3389/fmats.2020.00290. [Google Scholar]
- G. Zepon, B. H. Silva, C. Zlotea, W. J. Botta, and Y. Champion, “Thermodynamic modelling of hydrogen-multicomponent alloy systems: Calculating pressure- composition-temperature diagrams,” Acta Mater., vol. 215, p. 117070, 2021, doi: 10.1016/j.actamat.2021.117070. [CrossRef] [Google Scholar]
- J. S. Lim, W. J. Oh, C. M. Lee, and D. H. Kim, “Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods,” Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021, doi: 10.1038/s41598-021-03622-z. [NASA ADS] [CrossRef] [Google Scholar]
- R. Bardhan, A. M. Ruminski, A. Brand, and J. J. Urban, “Magnesium nanocrystal- polymer composites: A new platform for designer hydrogen storage materials,” Energy Environ. Sci., vol. 4, no. 12, pp. 4882–4895, 2011, doi: 10.1039/c1ee022 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.