Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 18 | |
Section | Robotics and Mechatronics | |
DOI | https://doi.org/10.1051/matecconf/202440604002 | |
Published online | 09 December 2024 |
- Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y., Fu, P., Gebauer, T., Joffe, B., Kurz, D., Schwartz, A. and Shulman, E., 2021. Arkitscenes: A diverse real-world dataset for 3d indoor scene understanding using mobile rgb-d data. arXiv preprint arXiv:2111.08897. [Google Scholar]
- Li, J., Wang, C., Kang, X. and Zhao, Q., 2020. Camera localization for augmented reality and indoor positioning: a vision-based 3D feature database approach. International journal of digital earth. [Google Scholar]
- Das Spandan, D., 2024. Scene Understanding and Spatial Analysis Using Scene Graph Enhanced by Hall's Proxemics Zones in Smart Homes. [Google Scholar]
- Karami, E., Prasad, S. and Shehata, M., 2017. Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images. arXiv preprint arXiv:1710.02726. [Google Scholar]
- Bo, L., Ren, X. and Fox, D., 2011, September. Depth kernel descriptors for object recognition. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 821-826). IEEE. [Google Scholar]
- Zhang, Y., Sidibé, D., Morel, O. and Mériaudeau, F., 2021. Deep multimodal fusion for semantic image segmentation: A survey. Image and Vision Computing, 105, p.104042. [CrossRef] [Google Scholar]
- Anding, K., Haar, L., Polte, G., Walz, J. and Notni, G., 2019, September. Comparison of the performance of innovative deep learning and classical methods of machine learning to solve industrial recognition tasks. In Photonics and Education in Measurement Science 2019 (Vol. 11144, pp. 169-179). SPIE. [Google Scholar]
- Gupta, A. and Fernando, X., 2022. Simultaneous localization and mapping (slam) and data fusion in unmanned aerial vehicles: Recent advances and challenges. Drones, 6(4), p.85. [CrossRef] [Google Scholar]
- Wijayathunga, L., Rassau, A. and Chai, D., 2023. Challenges and solutions for autonomous ground robot scene understanding and navigation in unstructured outdoor environments: A review. Applied Sciences, 13(17), p.9877. [CrossRef] [Google Scholar]
- Silberman, N., Hoiem, D., Kohli, P. and Fergus, R., 2012. Indoor segmentation and support inference from rgbd images. In Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part V 12 (pp. 746-760). Springer Berlin Heidelberg. [Google Scholar]
- Song, S., Lichtenberg, S.P. and Xiao, J., 2015. Sun rgb-d: A rgb-d scene understanding benchmark suite. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 567-576). [Google Scholar]
- Handa, A., Whelan, T., McDonald, J. and Davison, A.J., 2014, May. A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In 2014 IEEE international conference on Robotics and automation (ICRA) (pp. 1524-1531). IEEE. [Google Scholar]
- Sturm, J., Engelhard, N., Endres, F., Burgard, W. and Cremers, D., 2012, October. A benchmark for the evaluation of RGB-D SLAM systems. In 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 573-580). IEEE. [Google Scholar]
- Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P. and Lepetit, V., 2011. Gradient response maps for real-time detection of textureless objects. IEEE transactions on pattern analysis and machine intelligence, 34(5), pp.876-888. [Google Scholar]
- Zhou, T., Brown, M., Snavely, N. and Lowe, D.G., 2017. Unsupervised learning of depth and ego-motion from video. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1851-1858). [Google Scholar]
- Xiang, Y., Xie, C., Mousavian, A. and Fox, D., 2021, October. Learning rgb-d feature embeddings for unseen object instance segmentation. In Conference on Robot Learning (pp. 461-470). PMLR. [Google Scholar]
- Couprie, C., Farabet, C., Najman, L. and LeCun, Y., 2013. Indoor semantic segmentation using depth information. arXiv preprint arXiv:1301.3572. [Google Scholar]
- Chen, Z., Liu, X., Kojima, M., Huang, Q. and Arai, T., 2021. A wearable navigation device for visually impaired people based on the real-time semantic visual SLAM system. Sensors, 21(4), p.1536. [CrossRef] [Google Scholar]
- Van Eden, B., Botha, N. and Rosman, B., 2023. A comparison of visual place recognition methods using a mobile robot in an indoor environment. [Google Scholar]
- Deng, J. et al., 2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. [Google Scholar]
- Zhou, B., Lapedriza, A., Khosla, A., Oliva, A. and Torralba, A., 2017. Places: A 10 million image database for scene recognition. IEEE transactions on pattern analysis and machine intelligence, 40(6), pp.1452-1464. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.