Open Access
Issue
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
Article Number 03016
Number of page(s) 11
Section Material Development
DOI https://doi.org/10.1051/matecconf/202440603016
Published online 09 December 2024
  1. C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, “On the elemental effect of AlCoCrCuFeNi high-entropy alloy system,” Materials letters, vol. 61, no. 1, pp. 1-5, 2007. [CrossRef] [Google Scholar]
  2. S. Huang et al., “Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys,” Materials & design, vol. 103, pp. 71-74, 2016. [CrossRef] [Google Scholar]
  3. M. Dada, P. Popoola, and N. Mathe, “Recent advances of high entropy alloys for aerospace applications: a review,” World Journal of Engineering, vol. 20, no. 1, pp. 43-74, 2023, doi: 10.1108/WJE-01-2021-0040. [CrossRef] [Google Scholar]
  4. L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery, and I. Guillot, “New structure in refractory high-entropy alloys,” Materials Letters, vol. 132, pp. 123-125, 2014. [CrossRef] [Google Scholar]
  5. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy, “Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0. 5 high entropy alloy,” Materials Letters, vol. 174, pp. 53-56, 2016. [CrossRef] [Google Scholar]
  6. C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang, “Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements,” Metallurgical and Materials Transactions A, vol. 36, pp. 1263-1271, 2005. [CrossRef] [Google Scholar]
  7. C.-Y. Hsu, C.-C. Juan, W.-R. Wang, T.-S. Sheu, J.-W. Yeh, and S.-K. Chen, “On the superior hot hardness and softening resistance of AlCoCrxFeMo0. 5Ni high- entropy alloys,” Materials Science and Engineering: A, vol. 528, no. 10-11, pp. 3581-3588, 2011. [CrossRef] [Google Scholar]
  8. C.-y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, “Wear resistance and high- temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition,” Metallurgical and Materials Transactions A, vol. 35, pp. 1465-1469, 2004. [CrossRef] [Google Scholar]
  9. M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, and Y.-S. Huang, “Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy,” Metallurgical and Materials Transactions A, vol. 37, pp. 1363-1369, 2006. [CrossRef] [Google Scholar]
  10. C.-W. Tsai, M.-H. Tsai, J.-W. Yeh, and C.-C. Yang, “Effect of temperature on mechanical properties of Al0. 5CoCrCuFeNi wrought alloy,” Journal of Alloys and Compounds, vol. 490, no. 1-2, pp. 160-165, 2010. [CrossRef] [Google Scholar]
  11. É. Fazakas, V. Zadorozhnyy, and D. Louzguine-Luzgin, “Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi) 60- xNi20Cu20Fex (x= 15, 20) high-entropy alloys,” Applied Surface Science, vol. 358, pp. 549-555, 2015. [CrossRef] [Google Scholar]
  12. W. Guo, J. Li, M. Qi, Y. Xu, and H. R. Ezatpour, “Effects of heat treatment on the microstructure, wear behavior and corrosion resistance of AlCoCrFeNiSi high- entropy alloy,” Intermetallics, vol. 138, p. 107324, 2021. [CrossRef] [Google Scholar]
  13. L.R. Kanyanea, A.P.I. Popoolaa, N. Malatji, and M. Dada,. “Evaluation of Mechanical and Electrochemical Performance of Arc-melted AlVCrFeNi High Entropy Alloy”, In 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG) IEEE, (pp. 1-5), 2024. [Google Scholar]
  14. Z. Wang, X. Wang, H. Yue, G. Shi, and S. Wang, “Microstructure, thermodynamics and compressive properties of AlCoCrCuMn-x (x= Fe, Ti) high-entropy alloys,” Materials Science and Engineering, A, 627, pp.391-398, 2015. [Google Scholar]
  15. D. G. Kim et al., “Effects of annealing temperature on microstructures and tensile properties of a single FCC phase CoCuMnNi high-entropy alloy,” Journal of Alloys and Compounds, vol. 812, p. 152111, 2020. [CrossRef] [Google Scholar]
  16. S. A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, and J. Schroers, “Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC,” Acta Materialia, vol. 166, pp. 677-686, 2019. [CrossRef] [Google Scholar]
  17. C.-F. Lee and T.-T. Shun, “Effects of the replacement of Co with Ni on the microstructure, mechanical properties, and age hardening of AlCo1− xCrFeNi1+ x high-entropy alloys,” Materials, vol. 14, no. 10, p. 2665, 2021. [CrossRef] [Google Scholar]
  18. C.-M. Lin, H.-L. Tsai, and H.-Y. Bor, “Effect of aging treatment on microstructure and properties of high-entropy Cu0. 5CoCrFeNi alloy,” Intermetallics, vol. 18, no. 6, pp. 1244-1250, 2010. [CrossRef] [Google Scholar]
  19. Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, “Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids,” Corrosion Science, vol. 52, no. 3, pp. 1026-1034, 2010. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.