Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 03006 | |
Number of page(s) | 16 | |
Section | Material Development | |
DOI | https://doi.org/10.1051/matecconf/202440603006 | |
Published online | 09 December 2024 |
- G. Lütjering, J.C. Williams, Titanium, 2nd Edition, Springer, Berlin (2007) [Google Scholar]
- M. Özcan, C. Hämmerle, Titanium as a Reconstruction and Implant Material in Dentistry: Advantages and Pitfalls, Mater., 5, 9 (2012) [Google Scholar]
- J. Liu, F. Li, C. Liu, H. Wang, B. Ren, K. Yang, E. Zhang, Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys, Mat. Sci. and Eng. C, 35, 1 (2014) [CrossRef] [Google Scholar]
- M.M. Hatamleh, X. Wu, A. Alnazzawi, J. Watson, Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments, Dent. Mater., 34, 4 (2018) [Google Scholar]
- Y. Takeuchi, M. Tanaka, J. Tanaka, A. Kamimoto, M. Furuchi, H. Imai, Fabrication systems for restorations and fixed dental prostheses made of titanium and titanium alloys, J. Prosthodontic Res., 64, 1 (2020) [CrossRef] [Google Scholar]
- D. Kuroda, M. Niinomi, Morinaga, M., Y.T. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. and Eng. A, 243, (1998) [Google Scholar]
- C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Germany (2003) [CrossRef] [Google Scholar]
- M. Long, H.J. Rack, Titanium alloys in total joint replacement - A materials science perspective, Biomater., 19, 18 (1998) [Google Scholar]
- A. Revathi, S. Magesh, K.B. Vamsi, D. Mitun, M. Geetha, Current advances in enhancement of wear and corrosion resistance of titanium alloys – a review, Mater. Tech., 31, 12, (2016) [Google Scholar]
- M.T. Mohammed, Development of a new metastable beta titanium alloy for biomedical applications, Inter. Journal of Mod. Sci., 3, 4 (2017) [Google Scholar]
- L.S. Morais, G.G. Serra, C.A. Muller, L.R. Andrade, E.F. Palermo, C.N. Elias, M. Meyers, Acta Biomater., 3, 3 (2007) [Google Scholar]
- P. Stenlund, O. Omar, U. Brohede, S. Norgren, B. Norlindh, A. Johansson, J. Lausmaa, P. Thomsen, A. Palmquist, Bone response to a novel Ti–Ta–Nb–Zr alloy, Acta Biomater., 20, (2015) [Google Scholar]
- S.G. Steinemann, Corrosion of surgical implants-in vivo and in vitro tests, in: G.D. Winter, J.L. Leray, K. de Groot, (Eds.), Evaluation of Biomaterials, John Wiley & Sons Ltd., (1980) [Google Scholar]
- D. Kuroda, M. Niinomi, M. Morinaga, Y.K. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, Mater. Sci. and Eng. A, 243, 1–2 (1998) [Google Scholar]
- Å. Leonhardt, G. Dahlén, Effect of titanium on selected oral bacterial species in vitro’, Eur. J. of Oral Sci., 103, 6 (1995) [Google Scholar]
- H.F. Li, K.J. Qiu, F.Y. Zhou, L. Li, Y. Zheng, Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application, Sci. Rep., 6, 1 (2016) [CrossRef] [Google Scholar]
- J. Nowicka, M. Bartoszewicz, G. Gościniak, Effect of selected properties of Staphylococcus epidermidis to biofilm formation on orthopedic implants, Med. Dos. Mikro., 64, 3 (2012) [Google Scholar]
- E. Barth, M.Q. Myrvik, W. Wagner, A.G. Gristina, In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials, Biomater., 10, 5 (1989) [Google Scholar]
- A. Alani, M. Kelleher, K. Bishop, Peri-implantitis. Part 1: Scope of the problem, Brit. Dent. J., 217, 6 (2014) [Google Scholar]
- E. Zhang, F. Li, H. Wang, J. Liu, C. Wang, M. Li, K. Yang, A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property, Mater. Sci. and Eng. C, 33, 7 (2013) [Google Scholar]
- L. Fowler, N. Masia, L.A. Cornish, L.H. Chown, H. Engqvist, S. Norgren, C. Öhman- Mägi, Development of Antibacterial Ti-Cux Alloys for Dental Applications: Effects of Ageing for Alloys with Up to 10 wt% Cu, Mater., 12, 23 (2019) [Google Scholar]
- J.-O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Thermo-Calc and DICTRA, Computational tools for materials science, CALPHAD, 26, 2 (2002) [Google Scholar]
- A. Abkowitz, Heat treated Titanium-Aluminium-Vanadium alloy, US Patent 2,906,654A (1954) [Google Scholar]
- P. Vizureanu, M.S. Bălțatu, Titanium-based alloys for biomedical applications. Mater. Res. For. LLC, June (2020) [Google Scholar]
- G.F. Vander Voort, Metallographic preparation of titanium and its alloys, Buehler Tech-Notes, 3, 3 (1999) [Google Scholar]
- I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507: Definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys, Office for Official Publications of the European Communities, Luxembourg, 2 (1998) [Google Scholar]
- A.F. Guillermet, Thermodynamic analysis of the stable phases in the Zr - Nb system and calculation of the phase diagram, Inter. J. of Mater. Res., 85, 6 (1991) [Google Scholar]
- R. Ferro, A. Saccoe, Intermetallic Chemistry, Elsevier, London (2008) [Google Scholar]
- G. Ghosh, First-principles calculations of structural energetics of Cu–TM (TM=Ti, Zr, Hf) intermetallics, Acta Mater., 55, 10 (2007) [Google Scholar]
- N. Karlsson, An X-Ray study of the Phases in the Copper Titanium System, J. Inst. Met, 79, (1951) [Google Scholar]
- M.H. Mueller, H.W. Knott, The Crystal Structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O, Trans. of Amer. Inst. Met. Eng., 227, (1963) [Google Scholar]
- R. Bandy, The simultaneous determination of tafel constants and corrosion rate—a new method, Corr. Sci., 20, (1980) [Google Scholar]
- E. Zhang, S. Ren, L. Li, L. Yang, G. Qin, Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys, Biomed. Mater., 11, 6 (2016) [Google Scholar]
- N.D. Tomashov, G.P. Chernova, S. Yu.S. Ruscol, G.A. Ayuyan, The passivation of alloys on titanium bases, Electro. Acta, 19, 4 (1974) [Google Scholar]
- S. Gudić, L. Vrsalović, D. Kvrgić, A. Nagode, Electrochemical Behaviour of Ti and Ti-6Al-4V Alloy in Phosphate Buffered Saline Solution, Mater., 14, 24 (2021) [Google Scholar]
- R. Bhola, S.M. Bhola, B. Mishra, D.L. Olson, Corrosion in Titanium Dental Implants/Prostheses - A Review, Trends in biomater. and artif. Org., 25, (2011) [Google Scholar]
- J. Wang, S. Zhang, Z. Sun, H. Wang, L. Ren, K. Yang, Optimization of mechanical property, antibacterial property and corrosion resistance of Ti-Cu alloy for dental implant, J. Mater. Sci. Technol., 35, (2019) [Google Scholar]
- A.K. Pandey, R.K. Gautam, C.K. Behera, Corrosion and wear behavior of Ti–5Cu-xNb biomedical alloy in simulated body fluid for dental implant applications, J. Mech. Biomed. Mater., 137, (2023) [Google Scholar]
- M. Bao, Y. Liu, X. Wang, L. Yang, S. Li, J. Ren, G. Qin, E. Zhang, Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment, Bio. Mater., 3, 1, (2018). [Google Scholar]
- M.R. Akbarpour, F.A. Hesari, Characterization and hardness of TiCu–Ti2Cu3 intermetallic material fabricated by mechanical alloying and subsequent annealing, Mater. Res. Express, 3, 4, (2016) [Google Scholar]
- M.R. Akbarpour, H.M. Mirabad, A. Hemmati, H.S. Kim, Processing and microstructure of Ti-Cu binary alloys: A comprehensive review, Prog. in Mater. Sci., 127, (2022) [Google Scholar]
- Z. Wang, Z. Xiao, Y. Tse, C. Huang, W. Zhang, Optimization of processing parameters and establishment of a relationship between microstructure and mechanical properties of SLM titanium alloy, Opti. and Laser Tech., 112, (2019) [Google Scholar]
- M. Saini, Y. Singh, P. Arora, V. Arora, K. Jain, Implant biomaterials: A comprehensive review’, World J. of Clin. Cases, 3, 1, (2015) [Google Scholar]
- J. M. Cordeiro, T. Beline, A.L.R. Ribeiro, E.C. Rangel, N.C. da Cruz, R. Landers, L.P. Faverani, L.G. Vaz, L.M.G. Fais, F.B. Vicente, C.R. Grandini, M.T. Mathew, C. Sukotjo, V.A.R. Barão, Development of binary and ternary titanium alloys for dental implants, Dent. Mater., 33, 11, (2017) [Google Scholar]
- R.F. dos Santos, M.C. Rossi, A.L. Vidilli, V.A. Borrás, C.R.M. Afonso, Assessment of β stabilizers additions on microstructure and properties of as-cast β Ti–Nb based alloys, J. Mater. Res. and Tech., 22, (2023) [Google Scholar]
- M.R. Akbarpour, H.M. Mirabad, A. Hemmati, H.S. Kim, Processing and microstructure of Ti-Cu binary alloys: A comprehensive review, Prog. in Mater. Sci., 127, (2022) [Google Scholar]
- F.D. Al-Shalawi, A.A. Mohamed, D.W. Jung, M.K.A. Mohd Ariffin, C.L. Seng Kim, D. Brabazon, M.O. Al-Osaimi, Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers, Poly., 15, 12, (2023) [Google Scholar]
- K.D. Ukabhai, K. T. Nape, L. Spotose, M. Mavundla, I.A. Mwamba, M.O. Bodunrin, L.H. Chown, L.A. Cornish, Thermo-mechanical processing and phase analysis of titanium alloys with copper additions, Suid-Afrikaanse T. vir Natuurwetenskap en Teg., 40, 1, (2021) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.