Open Access
Issue |
MATEC Web Conf.
Volume 406, 2024
2024 RAPDASA-RobMech-PRASA-AMI Conference: Unlocking Advanced Manufacturing - The 25th Annual International RAPDASA Conference, joined by RobMech, PRASA and AMI, hosted by Stellenbosch University and Nelson Mandela University
|
|
---|---|---|
Article Number | 02004 | |
Number of page(s) | 9 | |
Section | Computational & Data-driven Modelling seminar | |
DOI | https://doi.org/10.1051/matecconf/202440602004 | |
Published online | 09 December 2024 |
- A. Wilson, and J.A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties,” Adv. Phys., vol. 73, no. 18, pp. 193–335, (1969). [CrossRef] [Google Scholar]
- S. Shin, B., Zhu, Y., Bojarczuk, N.A., Jay Chey, S. and Guha, “No TitleControl of an interfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TiN diffusion barrier,” Appl. Phys. Lett., vol. 5, no. 101, (2012). [Google Scholar]
- B. Shin, N. A. Bojarczuk, and S. Guha, “On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact,” Appl. Phys. Lett., vol. 102, no. 9, pp. 7–11, (2013). [Google Scholar]
- J. Li, Y. Zhang, W. Zhao, D. Nam, H. Cheong, L. Wu, Z. Zhou, and Y. Sun, “A temporary barrier effect of the alloy layer during selenization: Tailoring the thickness of MoSe2 for efficient Cu2ZnSnSe4 solar cells,” Adv. Energy Mater., vol. 5, no. 9, p. 1402178, (2015). [CrossRef] [Google Scholar]
- D. S. Fox, Y. Zhou, P. Maguire, A. Oneill, C. Ócoileaín, R. Gatensby, A. M. Glushenkov, T. Tao, G. S. Duesberg, I. V. Shvets, et al., “Nanopatterning and Electrical Tuning of MoS2 Layers with a Subnanometer Helium Ion Beam,” Nano Lett., vol. 15, no. 8, pp. 5307–5313, (2015). [CrossRef] [Google Scholar]
- S. Larentis, B. Fallahazad, E. Tutuc, S. Larentis, B. Fallahazad, and E. Tutuc, “Field- effect transistors and intrinsic mobility in ultra-thin MoSe2 layers Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers,” Appl. Phys. Lett., vol. 223104, no. 2012, pp. 1–4, (2015). [Google Scholar]
- X. Zhang, Z. Lai, C. Tan, and H. Zhang, “Solution-Processed Two-Dimensional MoS2 Nanosheets: Preparation, Hybridization, and Applications,” Angew. Chemie - Int. Ed., vol. 55, no. 31, pp. 8816–8838, (2016). [CrossRef] [Google Scholar]
- S. Das, M. Kim, J.-W. Lee, and W. Choi, “Critical Reviews in Solid State and Materials Sciences Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review Synthesis, Properties, and Applications of 2-D Materials: A Comprehensive Review,” Crit. Rev. Solid State Mater. Sci., vol. 4, no. 39, pp. 231–252, (2014). [CrossRef] [Google Scholar]
- C. Mutalik, D. Ika Krisnawati, S. B. Patil, M. Khafid, D. Susetiyanto Atmojo, P. Santoso, S.-C. Lu, D.-Y. Wang, and T.-R. Kuo, “Phase-Dependent MoS2 Nanoflowers for Light-Driven Antibacterial Application,” ACS Sustain. Chem. Eng., vol. 23, no. 9, pp. 7904–7912, (2021). [CrossRef] [Google Scholar]
- J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, et al., “Electrical control of neutral and charged excitons in a monolayer semiconductor,” Nat. Commun. 2013 41, vol. 4, no. 1, pp. 1–6, (2013). [Google Scholar]
- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147–150, (2011). [CrossRef] [Google Scholar]
- S. Tongay, J. Zhou, C. Ataca, J. Liu, J. S. Kang, T. S. Matthews, L. You, J. Li, J. C. Grossman, and J. Wu, “Broad-Range Modulation of Light Emission in Two- Dimensional Semiconductors by Molecular Physisorption Gating,” Nano Lett., vol. 07, no. 13, p. 41, (2023). [Google Scholar]
- Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, “Single-layer MoS2 phototransistors,” ACS Nano, vol. 6, no. 1, pp. 74–80, (2012). [CrossRef] [Google Scholar]
- K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: A new direct-gap semiconductor,” Phys. Rev. Lett., vol. 105, no. 13, p. 136805, (2010). [CrossRef] [PubMed] [Google Scholar]
- A. Voshell, M. Rana, M. Terrones, and M. Rana Andrew Voshell, “Review of optical properties of two-dimensional transition metal dichalcogenides,” Wide bandgap power energy devices Appl. III, vol. 10754, no. 7, pp. 66–83, (2018). [Google Scholar]
- Y. Ravi Kumar, K. Deshmukh, T. Kovářík, and S. K. Khadheer Pasha, “A systematic review on 2D materials for volatile organic compound sensing,” Coord. Chem. Rev., vol. 461, (2022). [Google Scholar]
- J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, “Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis,” Nat. Mater., vol. 11, no. 11, pp. 963–969, (2012). [CrossRef] [Google Scholar]
- H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility,” ACS Nano, vol. 8, no. 4, pp. 4033–4041, (2014). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?,” Nano Lett., vol. 11, no. 9, pp. 3768–3773, (2011). [CrossRef] [Google Scholar]
- A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, “Emerging Photoluminescence in Monolayer MoS2,” ACS Publ., vol. 10, no. 4, pp. 1271–1275, (2010). [Google Scholar]
- D. Xiao, G. Bin Liu, W. Feng, X. Xu, and W. Yao, “Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides,” Phys. Rev. Lett., vol. 108, no. 19, p. 196802, (2012). [CrossRef] [Google Scholar]
- W. Yao, D. Xiao, and Q. Niu, “Valley-dependent optoelectronics from inversion symmetry breaking,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 77, no. 23, p. 235406, (2008). [CrossRef] [Google Scholar]
- A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 83, no. 24, p. 245213, (2011). [CrossRef] [Google Scholar]
- H. Zeng, G. Bin Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, et al., “Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides,” Sci. Rep., vol. 3, no. 1, p. 1608, (2013). [CrossRef] [Google Scholar]
- R. S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A. C. Ferrari, P. Avouris, and M. Steiner, “Electroluminescence in single layer MoS2,” Nano Lett., vol. 13, no. 4, pp. 1416–1421, (2013). [CrossRef] [Google Scholar]
- J. R. Lince, H. I. Kim, P. M. Adams, D. J. Dickrell, and M. T. Dugger, “Nanostructural, electrical, and tribological properties of composite Au-MoS2 coatings,” Thin Solid Films, vol. 517, no. 18, pp. 5516–5522, (2009). [CrossRef] [Google Scholar]
- P. Roy and S. K. Srivastava, “Chemical bath deposition of MoS2 thin film using ammonium tetrathiomolybdate as a single source for molybdenum and sulphur,” Thin Solid Films, vol. 496, no. 2, pp. 293–298, (2006). [CrossRef] [Google Scholar]
- J. A. Spirko, M. L. Neiman, A. M. Oelker, and K. Klier, “Electronic structure and reactivity of defect MoS2: I. Relative stabilities of clusters and edges, and electronic surface states,” Surf. Sci., vol. 542, no. 3, pp. 192–204, (2003). [CrossRef] [Google Scholar]
- R. Shidpour and M. Manteghian, “The creation of the magnetic and metallic characteristics in low-width MoS2 nanoribbon (1D MoS2): A DFT study,” Chem. Phys., vol. 360, no. 1–3, pp. 97–105, (2009). [CrossRef] [Google Scholar]
- C. Vorwerk, B. Aurich, C. Cocchi, and C. Draxl, “Bethe-Salpeter equation for absorption and scattering spectroscopy: Implementation in the exciting code,” Electron. Struct., vol. 1, no. 3, p. 037001, (2019). [CrossRef] [Google Scholar]
- J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, (1996). [CrossRef] [Google Scholar]
- J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, vol. 23, no. 10, pp. 5048–5079, (1981). [CrossRef] [Google Scholar]
- W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 85, no. 3, p. 033305, (2012). [CrossRef] [Google Scholar]
- L. Wei, C. Jun-fang, and W. Teng, “Electronic and elastic properties of PbS under pressure,” Phys. B Condens. Matter, vol. 405, no. 5, pp. 1279–1282, (2010). [CrossRef] [Google Scholar]
- A. P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A. K. Singh, D. Akinwande, and J. F. Lin, “Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide,” Nat. Commun., vol. 5, no. 1, p. 3731, (2014). [CrossRef] [Google Scholar]
- X. Fan, C. H. Chang, W. T. Zheng, J. L. Kuo, and D. J. Singh, “The electronic properties of single-layer and multilayer MoS2 under high pressure,” J. Phys. Chem. C, vol. 119, no. 19, pp. 10189–10196, (2015). [CrossRef] [Google Scholar]
- H. Peelaers and C. G. Van De Walle, “Effects of strain on band structure and effective masses in MoS2,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 86, no. 24, p. 241401, (2012). [CrossRef] [Google Scholar]
- J. N. Yuan, Y. Cheng, X. Q. Zhang, X. R. Chen, and L. C. Cai, “First-principles study of electronic and elastic properties of hexagonal layered crystal MoS2 under pressure,” Zeitschrift fur Naturforsch. - Sect. A J. Phys. Sci., vol. 70, no. 7, pp. 529–538, (2015). [CrossRef] [Google Scholar]
- L. Wei, C. Jun-fang, H. Qinyu, W. T.-P. B. C. Matter, and undefined 2010, “Electronic and elastic properties of MoS2,” Elsevier. [Google Scholar]
- V. Petkov, S. J. L. Billinge, P. Larson, S. D. Mahanti, T. Vogt, K. K. Rangan, and M. G. Kanatzidis, “Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of (formula presented),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 65, no. 9, pp. 1–4, (2002). [CrossRef] [Google Scholar]
- P. Vinet, J. Rose, … J. F.-J. of P., and undefined 1989, “Universal features of the equation of state of solids,” iopscience.iop.orgP Vinet, JH Rose, J Ferrante, JR SmithJournal Phys. Condens. Matter, 1989•iopscience.iop.org, vol. 1, pp. 1941–1963, (1989). [Google Scholar]
- C. Ataca, H. Şahin, E. Aktuörk, and S. Ciraci, “Mechanical and electronic properties of MoS2 nanoribbons and their defects,” J. Phys. Chem. C, vol. 115, no. 10, pp. 3934–3941, (2011). [CrossRef] [Google Scholar]
- J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, “Restoring the density-gradient expansion for exchange in solids and surfaces,” Phys. Rev. Lett., vol. 100, no. 13, p. 136406, (2008). [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.