Open Access
Issue
MATEC Web Conf.
Volume 405, 2024
1st International Conference on Advancements in Sustainable Energy, Materials, and Manufacturing Technology (ICASMMT 2024)
Article Number 02004
Number of page(s) 19
Section Materials Science
DOI https://doi.org/10.1051/matecconf/202440502004
Published online 25 October 2024
  1. M. Yacoub Al Shdaifat, R. Zulkifli, K. Sopian, and A. Adel Salih, “Basics, properties, and thermal issues of EV battery and battery thermal management systems: Comprehensive review,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 237, no. 2–3. SAGE Publications Ltd, pp. 295–311, Feb. 01, 2023. doi: 10.1177/09544070221079195. [CrossRef] [Google Scholar]
  2. S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of Characteristics -Lead Acid, Nickel Based, Lead Crystal and Lithium Based Batteries,” in 2015 17th UKSim-AMSS International Conference on Modelling and Simulation (UKSim), 2015, pp. 444–450. doi: 10.1109/UKSim.2015.69. [Google Scholar]
  3. M. Lowe, S. Tokuoka, T. Trigg, and G. Gereffi, “Lithium-ion Batteries for Electric Vehicles: Contributing CGGC researcher: Ansam Abayechi,” 2010. [Online]. Available: http://www.edf.org/home.cfm [Google Scholar]
  4. J.-M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries,” in Materials for Sustainable Energy, Co-Published with Macmillan Publishers Ltd, UK, 2010, pp. 171–179. doi:10.1142/9789814317665_0024. [CrossRef] [Google Scholar]
  5. J. Kim, J. Oh, and H. Lee, “Review on battery thermal management system for electric vehicles,” Appl Therm Eng, vol. 149, pp. 192–212, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2018.12.020. [CrossRef] [Google Scholar]
  6. T. M. Bandhauer, S. Garimella, and T. F. Fuller, “A Critical Review of Thermal Issues in Lithium-Ion Batteries,” J Electrochem Soc, vol. 158, no. 3, p. R1, 2011, doi: 10.1149/1.3515880. [CrossRef] [Google Scholar]
  7. K. Smith and C. Y. Wang, “Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles,” J Power Sources, vol. 160, no. 1, pp. 662–673, Sep. 2006, doi: 10.1016/j.jpowsour.2006.01.038. [CrossRef] [Google Scholar]
  8. A. Pesaran, “Battery Thermal Management in EVs and HEVs: Issues and Solutions,” Battery Man, vol. 43, Jan. 2001. [Google Scholar]
  9. A. Pesaran, “Battery Thermal Models for Hybrid Vehicle Simulations,” J Power Sources, vol. 110, pp. 377–382, Aug. 2002, doi: 10.1016/S0378-7753(02)00200-8. [CrossRef] [Google Scholar]
  10. Z. Jiang, H. B. Li, Z. Qu, and J.-F. Zhang, “Recent progress in lithium-ion battery thermal management for a wide range of temperature and abuse conditions,” Int J Hydrogen Energy, vol. 47, Jan. 2022, doi: 10.1016/j.ijhydene.2022.01.008. [Google Scholar]
  11. A. K. Thakur et al., “A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles,” J Energy Storage, vol. 32, p. 101771, 2020, doi: https://doi.org/10.1016/j.est.2020.101771. [CrossRef] [Google Scholar]
  12. A. Gupta et al., “A comparative study of the impact on combustion and emission characteristics of nanoparticle‐based fuel additives in the internal combustion engine,” Energy Sci. Eng., Dec. 2023, doi: 10.1002/ese3.1614. [Google Scholar]
  13. M. Keyser, G.-H. Kim, J. Neubauer, A. Pesaran, S. Santhanagopalan, and K. Smith, Design and Analysis of Large Lithium-Ion Battery Systems. Artech, 2014. [Online]. Available: http://ieeexplore.ieee.org/document/9100518 [Google Scholar]
  14. Q. Wang, P. Ping, X. Zhao, C. Guanquan, J. Sun, and C. Chen, “ChemInform Abstract: Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery,” J Power Sources, vol. 208, pp. 210–224, Jun. 2012, doi: 10.1016/j.jpowsour.2012.02.038. [CrossRef] [Google Scholar]
  15. P. Liu, Y. Li, B. Mao, M. Chen, Z. Huang, and Q. Wang, “Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery,” Appl Therm Eng, vol. 192, p. 116949, Apr. 2021, doi: 10.1016/j.applthermaleng.2021.116949. [CrossRef] [Google Scholar]
  16. S. Ambade et al., “Experimental investigation of microstructural, mechanical and corrosion properties of 316L and 202 austenitic stainless steel joints using cold metal transfer welding,” J. Mater. Res. Technol., vol. 27, pp. 5881–5888, Nov. 2023, doi: 10.1016/j.jmrt.2023.11.091. [CrossRef] [Google Scholar]
  17. F. He, X. Li, G. Zhang, G. Zhong, and J. He, “Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials,” Int J Energy Res, vol. 42, no. 10, pp. 3279–3288, Aug. 2018, doi: https://doi.org/10.1002/er.4081. [CrossRef] [Google Scholar]
  18. D. Finegan et al., “Characterising thermal runaway within lithium-ion cells by inducing and monitoring internal short circuits,” Energy Environ. Sci., vol. 10, pp. 1377–1388, Apr. 2017, doi: 10.1039/C7EE00385D. [CrossRef] [Google Scholar]
  19. J. Jaguemont, L. Boulon, and Y. Dubé, “A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures,” Appl Energy, vol. 164, pp. 99–114, 2016, doi: https://doi.org/10.1016/j.apenergy.2015.11.034. [CrossRef] [Google Scholar]
  20. S. Panchal et al., “Cycling degradation testing and analysis of a LiFePO4 battery at actual conditions,” Int J Energy Res, vol. 41, no. 15, pp. 2565–2575, Dec. 2017, doi: https://doi.org/10.1002/er.3837. [CrossRef] [Google Scholar]
  21. Y. Ji, Y. Zhang, and C.-Y. Wang, “Li-Ion Cell Operation at Low Temperatures,” J Electrochem Soc, vol. 160, pp. A636–A649, Jan. 2013, doi: 10.1149/2.047304jes. [CrossRef] [Google Scholar]
  22. K. S. Reddy, H. Vemanaboina, B. V. V. Naidu, B. Yelamasetti, P. Bridjesh, and S. D. Shelare, “Minimizing distortion in multi-pass GTAW welding of SS316L structures: a Taguchi approach,” Int. J. Interact. Des. Manuf., Sep. 2023, doi: 10.1007/s12008-02301512-4. [Google Scholar]
  23. R. Bugga, M. Smart, J. Whitacre, and W. West, Lithium Ion Batteries for Space Applications. 2007. doi: 10.1109/AERO.2007.352728. [Google Scholar]
  24. R. Zalosh, P. Gandhi, and A. Barowy, “Lithium-ion energy storage battery explosion incidents,” J Loss Prev Process Ind, vol. 72, p. 104560, 2021, doi: https://doi.org/10.1016/j.jlp.2021.104560. [CrossRef] [Google Scholar]
  25. Y.-W. Wang, “Evaluate the deflagration potential for commercial cylinder Li-ion cells under adiabatic confinement testing,” J Therm Anal Calorim, vol. 143, Jan. 2020, doi: 10.1007/s10973-020-09282-x. [Google Scholar]
  26. S. Yalçin, S. Panchal, and M. Herdem, “A Cnn-Abc Model for Estimation and Optimization of Heat Generation Rate and Voltage Distributions of Lithium-Ion Batteries for Electric Vehicles,” Int J Heat Mass Transf, vol. 199, p. 123486, Dec. 2022, doi: 10.1016/j.ijheatmasstransfer.2022.123486. [CrossRef] [Google Scholar]
  27. S. Al Hallaj, H. Maleki, J. S. Hong, and J. R. Selman, “Thermal modeling and design considerations of lithium-ion batteries,” J Power Sources, vol. 83, no. 1, pp. 1–8, 1999, doi: https://doi.org/10.1016/S0378-7753(99)00178-0. [CrossRef] [Google Scholar]
  28. K. Thomas and J. Newman, “Thermal Modeling of Porous Insertion Electrodes,” J. Electrochem. Soc., vol. 150, pp. A176–A192, Feb. 2003, doi: 10.1149/1.1531194. [CrossRef] [Google Scholar]
  29. S. D. Shelare, R. Kumar, and P. B. Khope, “Flywheel Energy Application in Commercial and Agricultural Field: A Typical Review,” in Lecture Notes in Mechanical Engineering, Springer, 2021, pp. 177–186. doi: 10.1007/978-981-161079-0_19. [Google Scholar]
  30. X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, “Thermal runaway mechanism of lithium ion battery for electric vehicles: A review,” Energy Storage Mater, vol. 10, pp. 246–267, 2018, doi: https://doi.org/10.1016/j.ensm.2017.05.013. [CrossRef] [Google Scholar]
  31. T. A. Stuart and A. Hande, “HEV battery heating using AC currents,” J Power Sources, vol. 129, no. 2, pp. 368–378, 2004, doi: https://doi.org/10.1016/j.jpowsour.2003.10.014. [CrossRef] [Google Scholar]
  32. C. Alaoui and Z. M. Salameh, “A Novel Thermal Management for Electric and Hybrid Vehicles,” Vehicular Technology, IEEE Transactions on, vol. 54, pp. 468–476, Apr. 2005, doi: 10.1109/TVT.2004.842444. [CrossRef] [Google Scholar]
  33. J. Li, P. Wu, and H. Tian, Researches on heating low-temperature lithium-ion power battery in electric vehicles. 2014. doi: 10.1109/ITEC-AP.2014.6941276. [Google Scholar]
  34. Z. Lei, C. Zhang, J. Li, G. Fan, and Z. Lin, “Preheating method of lithium-ion batteries in an electric vehicle,” Journal of Modern Power Systems and Clean Energy, vol. 3, Jun. 2015, doi: 10.1007/s40565-015-0115-1. [Google Scholar]
  35. D. Adair, K. Ismailov, and Z. Bakenov, Thermal Management of Li-ion Battery Packs. 2014. [Google Scholar]
  36. Z. Rao and S. Wang, “A review of power battery thermal energy management,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9. pp. 4554–4571, Dec. 2011. doi: 10.1016/j.rser.2011.07.096. [CrossRef] [Google Scholar]
  37. R. Sabbah, R. Kizilel, J. R. Selman, and S. Al-Hallaj, “Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution,” J Power Sources, vol. 182, no. 2, pp. 630–638, 2008, doi: https://doi.org/10.1016/j.jpowsour.2008.03.082. [CrossRef] [Google Scholar]
  38. P. Ramadass, B. Haran, R. White, and B. Popov, “Capacity fade of Sony 18650 cells cycled at elevated temperatures:: Part I. Cycling performance,” J Power Sources, vol. 112, Nov. 2002, doi: 10.1016/S0378-7753(02)00474-3. [Google Scholar]
  39. J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, “Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature,” J Power Sources, vol. 112, no. 1, pp. 222–230, 2002, doi: https://doi.org/10.1016/S0378-7753(02)00363-4. [CrossRef] [Google Scholar]
  40. K. Amine, J. Liu, and I. Belharouak, “High-temperature storage and cycling of CLiFePO 4/graphite Li-ion cells,” Electrochemistry Communications ELECTROCHEM COMMUN, vol. 7, pp. 669–673, Jul. 2005, doi: 10.1016/j.elecom.2005.04.018. [CrossRef] [Google Scholar]
  41. P. Liu et al., “Aging Mechanisms of LiFePO[sub 4] Batteries Deduced by Electrochemical and Structural Analyses,” J Electrochem Soc, vol. 157, no. 4, p. A499, 2010, doi: 10.1149/1.3294790. [CrossRef] [Google Scholar]
  42. J. Jaguemont, L. Boulon, P. Venet, Y. Dubé, and A. Sari, “Lithium-Ion Battery Aging Experiments at Subzero Temperatures and Model Development for Capacity Fade Estimation,” IEEE Trans Veh Technol, vol. 65, no. 6, pp. 4328–4343, 2016, doi: 10.1109/TVT.2015.2473841. [CrossRef] [Google Scholar]
  43. Y. Zheng et al., “Influence of charge rate on the cycling degradation of LiFePO4/mesocarbon microbead batteries under low temperature,” Ionics (Kiel), vol. 23, Aug. 2017, doi: 10.1007/s11581-017-2032-y. [Google Scholar]
  44. Y. Wei and M. Agelin-Chaab, “Development and experimental analysis of a hybrid cooling concept for electric vehicle battery packs,” J Energy Storage, vol. 25, p. 100906, 2019, doi: https://doi.org/10.1016/j.est.2019.100906. [CrossRef] [Google Scholar]
  45. A. A. A. Hakeem and D. Solyali, “Empirical Thermal Performance Investigation of a Compact Lithium Ion Battery Module under Forced Convection Cooling,” Applied Sciences, vol. 10, no. 11. 2020. doi: 10.3390/app10113732. [Google Scholar]
  46. Y. Fan, Y. Bao, C. Ling, Y. Chu, X. Tan, and S. Yang, “Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries,” Appl Therm Eng, vol. 155, pp. 96–109, 2019, doi: https://doi.org/10.1016/j.applthermaleng.2019.03.157. [CrossRef] [Google Scholar]
  47. J. Zhao, Z. Rao, H. Yutao, X. Liu, and Y. Li, “Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles,” Appl Therm Eng, vol. 85, Jun. 2015, doi: 10.1016/j.applthermaleng.2015.04.012. [Google Scholar]
  48. W. Tong, K. Somasundaram, E. Birgersson, A. Mujumdar, and C. Yap, “Thermoelectrochemical model for forced convection air cooling of a lithium-ion battery module,” Appl Therm Eng, vol. 99, Jan. 2016, doi: 10.1016/j.applthermaleng.2016.01.050. [Google Scholar]
  49. H. Sun and R. Dixon, “Development of cooling strategy for an air cooled lithium-ion battery pack,” J Power Sources, vol. 272, pp. 404–414, Dec. 2014, doi: 10.1016/j.jpowsour.2014.08.107. [CrossRef] [Google Scholar]
  50. O. Ozbalci, A. Dogan, and M. Asilturk, “Heat Transfer Performance of Plate Fin and Pin Fin Heat Sinks Using Al2O3/H2O Nanofluid in Electronic Cooling,” Processes, vol. 10, no. 8. 2022. doi: 10.3390/pr10081644. [CrossRef] [Google Scholar]
  51. W. Tong, K. Somasundaram, E. Birgersson, A. Mujumdar, and C. Yap, “Thermoelectrochemical model for forced convection air cooling of a lithium-ion battery module,” Appl Therm Eng, vol. 99, Jan. 2016, doi: 10.1016/j.applthermaleng.2016.01.050. [Google Scholar]
  52. R. Mahamud and C. Park, “Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity,” Lancet, vol. 196, pp. 5685–5696, Jul. 2011, doi: 10.1016/j.jpowsour.2011.02.076. [Google Scholar]
  53. S. Shahid and M. Agelin-Chaab, “Experimental and numerical studies on air cooling and temperature uniformity in a battery pack,” Int J Energy Res, vol. 42, Feb. 2018, doi: 10.1002/er.4018. [Google Scholar]
  54. S. Shahid and M. Agelin-Chaab, “Analysis of Cooling Effectiveness and Temperature Uniformity in a Battery Pack for Cylindrical Batteries,” Energies (Basel), Aug. 2017, doi: 10.3390/en10081157. [Google Scholar]
  55. S. Shahid and M. Agelin-Chaab, “Application of Jets and Vortex Generators to Improve Air-Cooling and Temperature Uniformity in a Simple Battery Pack,” J Therm Sci Eng Appl, vol. 11, Sep. 2018, doi: 10.1115/1.4041493. [Google Scholar]
  56. S. Park and D. Jung, “Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle,” J Power Sources, vol. 227, pp. 191–198, 2013, doi: https://doi.org/10.1016/j.jpowsour.2012.11.039. [CrossRef] [Google Scholar]
  57. M. Patil, J.-H. Seo, and M.-Y. Lee, “A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management,” Energy Convers Manag, vol. 229, p. 113715, Feb. 2021, doi: 10.1016/j.enconman.2020.113715. [CrossRef] [Google Scholar]
  58. P. Dubey, G. Pulugundla, and A. Srouji, “Direct Comparison of Immersion and ColdPlate Based Cooling for Automotive Li-Ion Battery Modules,” Energies (Basel), vol. 14, p. 1259, Feb. 2021, doi: 10.3390/en14051259. [CrossRef] [Google Scholar]
  59. S. Panchal, R. Khasow, I. Dincer, M. Agelin-Chaab, R. Fraser, and M. Fowler, “Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic lithium-ion battery,” Appl Therm Eng, vol. 122, pp. 80–90, 2017, doi: https://doi.org/10.1016/j.applthermaleng.2017.05.010. [CrossRef] [Google Scholar]
  60. S. Panchal, S. Mathewson, R. Fraser, R. Culham, and M. Fowler, “Thermal Management of Lithium-Ion Pouch Cell with Indirect Liquid Cooling using Dual Cold Plates Approach,” SAE International Journal of Alternative Powertrains, vol. 4, May 2015, doi: 10.4271/2015-01-1184. [Google Scholar]
  61. Z. Rao, Z. Qian, Y. Kuang, and Y. Li, “Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface,” Appl Therm Eng, vol. 123, pp. 1514–1522, Aug. 2017, doi: 10.1016/j.applthermaleng.2017.06.059. [CrossRef] [Google Scholar]
  62. C. Zhao and F. Jiang, “Minimization of Thermal Non-uniformity in Lithium-ion Battery Pack Cooled by Channeled Liquid Flow,” Int J Heat Mass Transf, vol. 129, pp. 660–670, Oct. 2018, doi: 10.1016/j.ijheatmasstransfer.2018.10.017. [Google Scholar]
  63. Q. Li, H. Shi, G. Xie, Z. Xie, and H. Liu, “Parametric study and optimization on novel f ork‐type m ini‐channel network cooling plates for a Li‐ion battery module under high discharge current rates,” Int J Energy Res, vol. 45, Jun. 2021, doi: 10.1002/er.6933. [Google Scholar]
  64. D.-I. Florian Schoewel and D.-I. Elmar Hockgeiger, “THE HIGH VOLTAGE BATTERIES OF THE BMW i3 AND BMW i8. AABC 2014, FEBRUARY 3TH7TH, ATLANTA.” [Google Scholar]
  65. “Sheet 1 of 27 Patent Application Publication,” 2014. [Google Scholar]
  66. S. Waghmare, N. Mungle, C. Tembhurkar, S. Shelare, and N. Pathare, “Design and analysis of power screw for manhole cover lifter,” Int. J. Recent Technol. Eng., vol. 8, no. 2, 2019, doi: 10.35940/ijrte.B2628.078219. [Google Scholar]
  67. I. Krüger and G. Schmitz, Energy Consumption Of Battery Cooling In Hybrid Electric Vehicles. 2012. [Google Scholar]
  68. P. Kritzer, H. Döring, and B. Emmermacher, “Improved Safety for Automotive Lithium Batteries: An Innovative Approach to include an Emergency Cooling Element,” Advances in Chemical Engineering and Science, vol. 04, pp. 197–207, Jan. 2014, doi: 10.4236/aces.2014.42023. [CrossRef] [Google Scholar]
  69. A. Faghri and C. Harley, “Transient lumped heat pipe analyses,” Heat Recovery Systems and CHP, vol. 14, no. 4, pp. 351–363, 1994, doi: https://doi.org/10.1016/0890-4332(94)90039-6. [CrossRef] [Google Scholar]
  70. X. Yang, Y. Y. Yan, and D. Mullen, “Recent developments of lightweight, high performance heat pipes,” Appl Therm Eng, vol. s 33-34, pp. 1–14, Feb. 2012, doi: 10.1016/j.applthermaleng.2011.09.006. [CrossRef] [Google Scholar]
  71. C.-C. Ting and C.-C. Chen, “Analyzing the Heat Transfer Property of Heat Pipe Influenced by Integrated Cooling Apparatus,” Chinese Journal of Engineering, vol. 2014, pp. 1–10, Mar. 2014, doi: 10.1155/2014/409074. [CrossRef] [Google Scholar]
  72. Y. Li, F. Qi, H. Guo, Z. Guo, G. Xu, and J. Liu, “Numerical investigation of thermal runaway propagation in a Li-ion battery module using the heat pipe cooling system,” Numeri Heat Transf A Appl, vol. 75, pp. 183–199, Feb. 2019, doi: 10.1080/10407782.2019.1580956. [CrossRef] [Google Scholar]
  73. J. Liang, Y. H. Gan, and Y. Li, “Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures,” Energy Convers Manag, vol. 155, pp. 1–9, Jan. 2018, doi: 10.1016/j.enconman.2017.10.063. [CrossRef] [Google Scholar]
  74. R. Baetens, B. P. Jelle, and A. Gustavsen, “Phase change materials for building applications: A state-of-the-art review,” Energy Build, vol. 42, no. 9, pp. 1361–1368, 2010, doi: https://doi.org/10.1016/j.enbuild.2010.03.026. [CrossRef] [Google Scholar]
  75. I. Elefsiniotis, T. Becker, and U. Schmid, “Thermoelectric Energy Harvesting Using Phase Change Materials (PCMs) in High Temperature Environments in Aircraft,” J Electron Mater, vol. 43, pp. 1809–1814, Jun. 2013, doi: 10.1007/s11664-013-2880-9. [Google Scholar]
  76. F. Kuznik et al., “A review on phase change materials integrated in building walls A review on phase change materials inte-grated in building walls. Renewable and Sustainable Energy Reviews A review on Phase Change Materials Integrated in Building Walls,” vol. 15, no. 1, pp. 379–391, 2011, doi: 10.1016/j.rser.2010.08.019ï. [Google Scholar]
  77. A. Sharma, V. V Tyagi, C. R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318–345, 2009, doi: https://doi.org/10.1016/j.rser.2007.10.005. [CrossRef] [Google Scholar]
  78. S. Wilke, B. Schweitzer, S. Khateeb, and S. Al-Hallaj, “Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study,” J Power Sources, vol. 340, pp. 51–59, 2017, doi: https://doi.org/10.1016/j.jpowsour.2016.11.018. [CrossRef] [Google Scholar]
  79. Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Appl Energy, vol. 148, pp. 403–409, Jun. 2015, doi: 10.1016/j.apenergy.2015.03.080. [CrossRef] [Google Scholar]
  80. Y. Lv, X. Yang, X. Li, G. Zhang, Z. Wang, and C. Yang, “Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins,” Appl Energy, vol. 178, pp. 376–382, Sep. 2016, doi: 10.1016/j.apenergy.2016.06.058. [CrossRef] [Google Scholar]
  81. Y. Liu, C. Ouyang, Q. Jiang, and B. Liang, “Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow,” J Cent South Univ, vol. 22, pp. 3970–3976, Oct. 2015, doi: 10.1007/s11771-015-29418. [CrossRef] [Google Scholar]
  82. H. Zhou, F. Zhou, L. Xu, and J. Kong, “Thermal performance of cylindrical Lithiumion battery thermal management system based on air distribution pipe,” Int J Heat Mass Transf, vol. 131, pp. 984–998, Mar. 2019, doi: 10.1016/j.ijheatmasstransfer.2018.11.116. [CrossRef] [Google Scholar]
  83. T. Wang, K. Tseng, J. Zhao, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Appl Energy, vol. 134, pp. 229–238, Dec. 2014, doi: 10.1016/j.apenergy.2014.08.013. [CrossRef] [Google Scholar]
  84. B. Saw Lip Huat, Y. Ye, M. Yew, W. T. Chong, M. K. Yew, and T. Ng, “Computational fluid dynamics simulation on open cell aluminium foams for Li-ion battery cooling system,” Appl Energy, vol. 204, Apr. 2017, doi: 10.1016/j.apenergy.2017.04.022. [Google Scholar]
  85. T. Wang, K. J. Tseng, and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Appl Therm Eng, vol. 90, pp. 521–529, 2015, doi: https://doi.org/10.1016/j.applthermaleng.2015.07.033. [CrossRef] [Google Scholar]
  86. S. Shahid and M. Agelin-Chaab, “Development and Analysis of a Technique to Improve Air-Cooling and Temperature Uniformity in a Battery Pack for Cylindrical Batteries,” Thermal Science and Engineering Progress, vol. 5, Mar. 2018, doi: 10.1016/j.tsep.2018.01.003. [Google Scholar]
  87. A. M. Sefidan, A. Sojoudi, and S. Saha, “Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow,” International Journal of Thermal Sciences, vol. 117, pp. 44–58, Jul. 2017, doi: 10.1016/j.ijthermalsci.2017.03.006. [CrossRef] [Google Scholar]
  88. K. Monika, C. Chakraborty, S. Roy, R. Sujith, and S. P. Datta, “A numerical analysis on multi-stage Tesla valve based cold plate for cooling of pouch type Li-ion batteries,” Int J Heat Mass Transf, vol. 177, p. 121560, 2021, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121560. [CrossRef] [Google Scholar]
  89. R. Jilte and R. Kumar, “Numerical investigation on cooling performance of Li-ion battery thermal management system at high galvanostatic discharge,” Engineering Science and Technology, an International Journal, vol. 21, Aug. 2018, doi: 10.1016/j.jestch.2018.07.015. [Google Scholar]
  90. A. Hussain, I. H. Abidi, C. Y. Tso, K. C. Chan, Z. Luo, and C. Y. H. Chao, “Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials,” International Journal of Thermal Sciences, vol. 124, pp. 23–35, 2018, [Online]. Available: https://api.semanticscholar.org/CorpusID:125599272 [CrossRef] [Google Scholar]
  91. M. Al-Zareer, I. Dincer, and M. Rosen, “Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles,” J Power Sources, vol. 363, pp. 291–303, Sep. 2017, doi: 10.1016/j.jpowsour.2017.07.067. [CrossRef] [Google Scholar]
  92. M. Al-Zareer, I. Dincer, and M. Rosen, “A Novel Phase Change Based Cooling System for Prismatic Lithium Ion Batteries,” International Journal of Refrigeration, vol. 86, Dec. 2017, doi: 10.1016/j.ijrefrig.2017.12.005. [Google Scholar]
  93. M. Al-Zareer, I. Dincer, and M. Rosen, “Electrochemical Modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles,” Electrochim Acta, vol. 247, Jun. 2017, doi: 10.1016/j.electacta.2017.06.162. [Google Scholar]
  94. M. Al-Zareer, I. Dincer, and M. Rosen, “Performance assessment of a new hydrogen cooled prismatic battery pack arrangement for hydrogen hybrid electric vehicles,” Energy Convers Manag, vol. 173, pp. 303–319, Oct. 2018, doi: 10.1016/j.enconman.2018.07.072. [CrossRef] [Google Scholar]
  95. S. Shahid and M. Agelin-Chaab, “Development of hybrid thermal management techniques for battery packs,” Appl Therm Eng, vol. 186, p. 116542, 2021, doi: https://doi.org/10.1016/j.applthermaleng.2020.116542. [CrossRef] [Google Scholar]
  96. Y. Wei and M. Agelin-Chaab, “Experimental investigation of a novel hybrid cooling method for lithium-ion batteries,” Appl Therm Eng, vol. 136, pp. 375–387, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2018.03.024. [CrossRef] [Google Scholar]
  97. S. Chen, A. Garg, L. Gao, and Xuezhe, “An experimental investigation for a hybrid phase change material‐liquid cooling strategy to achieve high‐temperature uniformity of Li‐ion battery module under fast charging,” Int J Energy Res, Dec. 2020. [Google Scholar]
  98. L. Huat Saw et al., “Novel thermal management system using mist cooling for Lithium-ion battery packs.” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.