Open Access
Issue
MATEC Web Conf.
Volume 404, 2024
2024 2nd International Conference on Materials Engineering, New Energy and Chemistry (MENEC 2024)
Article Number 01003
Number of page(s) 8
Section New Energy Systems, Storage Technologies, and Environmental Impact
DOI https://doi.org/10.1051/matecconf/202440401003
Published online 24 October 2024
  1. H. Na, et al., Investigation on thermal performance of eutectic binary nitrate-carbonate MS under thermal shock condition. Solar Energy Materials and Solar Cells, 255 (2019). [Google Scholar]
  2. W. G. El-Sayed, et al., Innovative and cost-effective nanodiamond based MS nanocomposite as efficient heat transfer fluid and thermal energy storage media. Renewable Energy, 177, 596-602 (2021). [CrossRef] [Google Scholar]
  3. Y. Grosu, et al., Nanofluids based on molten carbonate salts for high-temperature thermal energy storage: Thermophysical properties, stability, compatibility and life cycle analysis. Solar Energy Materials and Solar Cells, 220, 110838 (2021). [CrossRef] [Google Scholar]
  4. Q. Yu, et al., Comprehensive thermal properties of MS nanocomposite materials base on mixed nitrate salts with SiO2/TiO2 nanoparticles for thermal energy storage. Solar Energy Materials and Solar Cells, 230, 111215 (2021). [CrossRef] [Google Scholar]
  5. Y. Li, et al., Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate MS. Solar Energy, 183, 776-781 (2021). [Google Scholar]
  6. B. El Far, S. M. M. Rizvi, Y. Nayfeh, et al. Effect of Synthesis Protocol in Enhancing Heat Capacity of MS Nanofluids. Energy Sustainability. American Society of Mechanical Engineers, 83631, V001T02A021 (2023). [Google Scholar]
  7. M. Bernagozzi, A. Panesar, and R. Morgan, Temperature-Tailored MSs for Sustainable Energy Storage. Jom, 72, 635-643 (2019). [Google Scholar]
  8. C. Prieto, et al., Carbonate MS solar thermal pilot facility: Plant design, commissioning and operation up to 700 °C. Renewable Energy, 151, 528-541 (2021). [Google Scholar]
  9. G. Mohan, M.B. Venkataraman, J. Coventry, Sensible energy storage options for concentrating solar power plants operating above 600 °C. Renewable and Sustainable Energy Reviews, 107, 319-337 (2019). [CrossRef] [Google Scholar]
  10. D. Shin, H. Tiznobaik, and D. Banerjee, Specific heat mechanism of MS nanofluids. Applied Physics Letters, 104, 12 (2014). [CrossRef] [Google Scholar]
  11. Z. Li, et al., Effects of SiO2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications. Energies, 14, 3 (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.