Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 04001
Number of page(s) 13
Section Testing of Materials and Systems
DOI https://doi.org/10.1051/matecconf/202440304001
Published online 16 September 2024
  1. P. R. L. Helene. Analysis of the compressive strength of concrete in finished structures with a view to safety review. ALCONPAT Journal, vol. 1, n.1, p. 64-89. (2011). [Google Scholar]
  2. D. Latka, S. Serega, P. Matysek. Estimation of mortar compressive strength based on specimens extracted from masonry bed joints. In: R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, L. F. Ramos (eds). Structural Analysis of Historical Constructions. RILEM Bookseries, vol 18. Springer, Cham. (2019). [Google Scholar]
  3. W. Mazer. Inspection and testing on concrete structures. Apucarana, UTFPR. (2012). [Google Scholar]
  4. S. Parivallal, K. Kesavan, K. Ravisankar, B. A. Sundram, A. K. F. Ahmed. Evaluation of in-situ stress in masonry structures by flatjack technique. In Proceedings of the National Seminar & Exhibition on Non-destructive Evaluation, India. 8 p. (2011). [Google Scholar]
  5. American Society For Testing And Materials (ASTM). Standard C 1196-14: In-situ compressive stress within solid unit masonry estimated using flat-jack measurements. (2014). [Google Scholar]
  6. American Society For Testing And Materials (ASTM). Standard C 1197-14: In-situ measurement of masonry deformability properties using flat-jack method. (2014). [Google Scholar]
  7. American Society For Testing And Materials (ASTM). Standard C 1531-16: In-situ measurement of masonry mortar joint shear strength index. (2016). [Google Scholar]
  8. Rilem MDT. D.04: Rilem Recommendation MDT.D.04: In situ stress tests behavior based on the flatjack. (2004). [Google Scholar]
  9. Rilem MDT. D.05: Rilem Recommendation MDT.D.05: In situ stress-strain behavior tests based on the flatjack. (2004). [Google Scholar]
  10. F. Khan Multi-sensing NDT approaches for inspection of structural components. PhD, Civil Architectural and Environmental Engineering Department, Drexel University, Philadelphia, (2015). [Google Scholar]
  11. L. B. Maier, P. P. Rossi, G. S. Landriani. Diagnostic analysis of masonry buildings. In 1st ASBE Symposium, Italy. 8 p. (1983). [Google Scholar]
  12. F. Casarin, M. Ronen, Y. Schaffer, R. Italia, M.D. Benetta, M. R. Kyler, E. Cescatti. Mechanical characterization of masonry typologies in Israel via Flatjack Tests. In: R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, L. F. Ramos (eds). Structural Analysis of Historical Constructions. RILEM Bookseries, vol 18. Springer, Cham. (2019). [Google Scholar]
  13. P. P. Rossi. Analysis of Mechanical Characteristics of Brick Masonry by Means of non-destructive “in Situ” Tests. in 6th International Brick Masonry Conference. Rome, Rome. Italy, Italy. (1982). [Google Scholar]
  14. M. O. Soriani. Development of the flatjack technique in the evaluation of masonry structures with hollow blocks of concrete. 2016. 175 f. Thesis (Master’s degree in Civil Engineering). Graduate Program in Structures and Civil Construction, Federal University of São Carlos, São Carlos, (2016). [Google Scholar]
  15. W.A. Medeiros, M. O. Soriani, G. A. Parsekian. Innovation in flat-jack application to evaluate modern high-strength hollow concrete block masonry, Construction and Building Materials, Volume 255, (2020), https://doi.org/10.1016/j.conbuildmat.2020.119341. [CrossRef] [Google Scholar]
  16. K. Tacas, M. Gonzales, R. Aguilar. Mechanical characterization of adobe constructions using flatjack tests: Case study of the Virgen de la Asunción de Sacsamarca Church. In: R. Aguilar, D. Torrealva, S. Moreira, M. A. Pando, L. F. Ramos (eds). Structural Analysis of Historical Constructions. RILEM Bookseries, vol 18. Springer, Cham. (2019). [Google Scholar]
  17. Brazilian Association of Technical Standards. NBR 16868: Structural masonry. Part 1: Design. Rio de Janeiro, (2020). [Google Scholar]
  18. Eurocode 6: EN 1996-1-1: Design of Masonry Structures – Part 1-1: General rules for buildings – Rules for reinforced and unreinforced masonry. Brussels, Brussels. (2013). [Google Scholar]
  19. A. A. Hamid. NDD – Evaluation of masonry structures. In Monthly Meeting of ABECE, Brazil. (2013, not published). [Google Scholar]
  20. B.C. Suprenant, M. P. Schuller. Non-destructive evaluation & testing of masonry structures. 194p. The Aberdeen Group, Addison. (1994). [Google Scholar]
  21. Brazilian Association of Technical Standards. NBR 6118: Design of concrete structures - Procedure. Rio de Janeiro. (2014). [Google Scholar]
  22. G.A. Parsekian, A.A. Hamid, R.G. Drysdale. Behaviour and Design of Structural Masonry. 2nd Ed. (EdUFSCar, São Carlos, 2014). [Google Scholar]
  23. American Society for Testing and Materials (ASTM). Standard C1314-18: Standard test method for compressive strength of masonry prisms. (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.