Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 03002
Number of page(s) 11
Section New Mortar Solutions
DOI https://doi.org/10.1051/matecconf/202440303002
Published online 16 September 2024
  1. A. Lasia. Electrochemical Impedance Spectroscopy and its Applications. In: B.E. Onway, J.O. Bokris, R.E. White. Modern Aspects of Electrochemistry. Modern Aspects of Electrochemistry 32, 143-248 (2002). Springer, Boston, MA. https://doi.org/10.1007/0-306-46916-2_2 [Google Scholar]
  2. A.A.E. Elseady, I. Lee, Y. Zhuge, X. Ma, C.W.K. Chow, N. Gorijan. Piezoresistivity and AC Impedance Spectroscopy of Cement-Based Sensors: Basic Concepts, Interpretation, and Perspective. Materials 16, 768 (2023). https://doi.org/10.3390/ma16020768 [CrossRef] [Google Scholar]
  3. L.A. Buscaglia, O.N. Oliveira, J.P. Carmo. Roadmap for Electrical Impedance Spectroscopy for Sensing: A Tutorial. IEEE Sensors Journal 21, 20 (2021). https://doi.org/10.1109/jsen.2021.3085237 [Google Scholar]
  4. M. Frąc, W. Pichór. Piezoresistive properties of cement composites with expanded graphite. Composites Communications 19, 99–102 (2020). https://doi.org/10.1016/j.coco.2020.03.005 [CrossRef] [Google Scholar]
  5. H.C.F. Cordon, F.B. Tadini, G.A. Akiyama, V.O. Andrade, R.C. Silva. Development of electrically conductive concrete. Cerâmica 66, 88–92 (2020). https://doi.org/10.1590/0366-69132020663772775 [Google Scholar]
  6. E. García-Macías, F. Ubertini. Earthquake-induced damage detection and localization in masonry structures using smart bricks and Kriging strain reconstruction: A numerical study. Earthquake Engng Struct Dyn 48, 548–569 (2019). https://doi.org/10.1002/eqe.3148 [CrossRef] [Google Scholar]
  7. B. Han, K. Zhang, T. Burnham, E. Kwon, X. Yu. Integration and road tests of a self-sensing CNT concrete pavement system for traffic detection. Smart Materials and Structures 22(1), 015020 (2012). https://doi.org/10.1088/0964-1726/22/1/015020 [Google Scholar]
  8. S. Ding, Y. Xiang, Y.Q. Ni, V.K. Thakur, X. Wang, B. Han, J. Ou. In-situ synthesizing carbon nanotubes on cement to develop self-sensing cementitious composites for smart high-speed rail infrastructures. Nano Today 43, 101438 (2022). https://doi.org/10.1016/j.nantod.2022.101438 [CrossRef] [Google Scholar]
  9. A.K. Thomoglou, M.G. Falara, F.I. Gkountakou, A. Elenas, C.E. Chaliori. Smart Cementitious Sensors with Nano-, Micro-, and Hybrid-Modified Reinforcement: Mechanical and Electrical Properties. Sensors 23, 2405 (2023). https://doi.org/10.3390/s23052405 [CrossRef] [Google Scholar]
  10. C.T. Ozaki e Silva, J.B.L.P. Silva, R.C.C. Lintz; L.A. Gachet. Mortars with addition of powdered graphite: Mechanical and electrical properties. Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.03.489 [Google Scholar]
  11. G.H. Nalon, R.F. Santos, G.E.S. Lima, I.K.R. Andrade, L.G. Pedroti, J.C.L. Ribeiro, J.M.F. Carvalho. Recycling waste materials to produce self-sensing concretes for smart and sustainable structures: A review. Constr. and Build. Mat. 325, 126658 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126658 [CrossRef] [Google Scholar]
  12. C. Wang, D. Huang, H. Fu, H. Wu, G. Qin, G. Sun, N. Guo. Effect of Friction Reclaimed Materials of Waste Brake-shoe on Basic Performance of Mortar. Journal of Wuhan University of Technology-Mater. 32, 603 (2017) [CrossRef] [Google Scholar]
  13. J.B.L. e Silva, R.C.C. Lintz, L.A. Gachet. Analysis of the electrical and mechanical properties of cement composite produced with brake lining waste. Advances in Science And Technology. 149, 21-29 (2024) https://doi.org/10.4028/p-dR94Iv [Google Scholar]
  14. ABNT NBR 16541: Mortars applied on walls and ceilings - Preparation of mortar mixture for tests. Rio de Janeiro, 2016a. [Google Scholar]
  15. ABNT NBR 16868-2: Structural masonry - Part 2: Execution and site control. Rio de Janeiro, 2020. [Google Scholar]
  16. Y. Zhu, H. Zhang, Z. Zhang, Y. Yao. Electrochemical impedance spectroscopy (EIS) of hydration process and drying shrinkage for cement paste with W/C of 0.25 affected by high range water reducer. Construction and Building Materials. 131, 536-541 (2017). https://doi.org/10.1016/j.conbuildmat.2016.08.099 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.