Open Access
Issue
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
Article Number 02014
Number of page(s) 12
Section Mortar Properties
DOI https://doi.org/10.1051/matecconf/202440302014
Published online 16 September 2024
  1. Venetian card, Venice (1964) [Google Scholar]
  2. The Nara Document On Authenticity, Nara (1994) [Google Scholar]
  3. Athens Charter, Athens (1931) [Google Scholar]
  4. E. Sobczyńska, W. Terlikowski, M. Gregoriou-Szczepaniak, Stability of treatment from earth-based mortar in the conservation of stone structures in Tanais, Russia. Sustain. 13, 1–20 (2021) [Google Scholar]
  5. W. Terlikowski, M. Matera, K. Wasilewski, M. Gregoriou-Szczepaniak, E. Sobczyńska, Conservation of irregular stone masonry in Tanais in Russia. MATEC Web Conf. 196, 1–7 (2018) [Google Scholar]
  6. W. Terlikowski, K. Wasilewski, E. Sobczyńska, M. Gregoriou-Szczepaniak, Approach to the conservation of irregular stone masonry based on archaeological excavations in the Black Sea basin. E3S Web Conf. 49 (2018) [Google Scholar]
  7. L. Rampazzi, A. Pozzi, A. Sansonetti, L. Toniolo, B. Giussani, A chemometric approach to the characterization of historical mortars. Cem. Concr. Res. 36, 1108–1114 (2006) [CrossRef] [Google Scholar]
  8. A. Cavicchioli, G. Rolón, M. Odlyha, A Chemical Approach to the Selection of Soils for the Reproduction of Earth-based Mortars for Conservation Purposes: Case Report from a Brazilian Historic Site. Int. J. Archit. Herit. 17, 1950-1964 (2023) [CrossRef] [Google Scholar]
  9. P. Narloch, P. Woyciechowski, J. Kotowski,I. Gawriuczenkow, E. Wójcik, The effect of soil mineral composition on the compressive strength of cement-stabilized rammed earth. Materials. 13, 324 (2020) [CrossRef] [Google Scholar]
  10. F.G Bell, Lime stabilization of clay minerals and soils. Eng. Geol. 42, 223–237(1996) [CrossRef] [Google Scholar]
  11. H. Brandl, Alteration of soil parameters by stabilization with lime. In Proceedings of the Proceedings of the 10th International Conference of Soil Mechanics and Foundations Engineering, Stockholm, 15-19 June (1981) [Google Scholar]
  12. Y. Cai, B. Shi, Effect of polypropylene fiber and lime admixture on engineering properties of clayey soil. Eng. Geol. 87, 230–240 (2006) [CrossRef] [Google Scholar]
  13. S.M. Lahalih, N. Ahmed, Effect of new soil stabilizers on the compressive strength of dune sand. Constr. Build. Mater. 12, 321–328 (1998) [CrossRef] [Google Scholar]
  14. C. Tang, B. Shi, W. Gao, F. Chen, Y.Cai, Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembranes 25, 194–202 (2007) [CrossRef] [Google Scholar]
  15. Y. Ocak, A. Sofuoglu, F. Tihminlioglu, B. Hasan, Protection of marble surfaces by using biodegradable polymers as a coating agent. Prog. Org. Coatings 66, 213–220 (2009) [CrossRef] [Google Scholar]
  16. W. Terlikowski, E. Sobczyńska, M. Gregoriou-Szczepaniak, K. Wasilewski, Natural and Synthetic Polymers Used in the Preservation of Historical Stone Buildings. IOP Conf. Ser. Mater. Sci. Eng. 661 (2019) [Google Scholar]
  17. RILEM TC 203-RHM Repair mortars for historic masonry (2012) [Google Scholar]
  18. A. Moropoulou, A. Bakolas, P. Moundoulas, E. Aggelakopoulou, Reverse engineering: A proper methodology for compatible restoration mortars. Proc. Work. Repair Mortars Hist. Mason. Delft, Netherlands, 25–28 (2005) [Google Scholar]
  19. J.D. Rodrigues, A. Grossi, Indicators and ratings for the compatibility assessment of conservation actions. J. Cult. Herit. 8, 32–43 (2007) [CrossRef] [Google Scholar]
  20. M. Apostolopoulou, E. Aggelakopoulou, A. Bakolas, A. Moropoulou, Compatible mortars for the sustainable conservation of stone in masonries in Advanced Materials for Conservation of Stone, 97–123 (2018) [Google Scholar]
  21. PN-B-04500:1985 Zaprawy budowlane – Badanie cech fizycznych i wytrzymałościowych [Google Scholar]
  22. PN-EN 196-1:2016-07 Metody badania cementu – Część 1: Oznaczanie wytrzymałości.; [Google Scholar]
  23. PN-EN 1015-11:2020-04 Metody badań zapraw do murów – Część 11: Określenie wytrzymałości na zginanie i ściskanie stwardniałej zaprawy.; [Google Scholar]
  24. PN-EN 1015-12 Określenie przyczepności do podłoża stwardniałych zapraw na obrzutkę i do tynkowania.; [Google Scholar]
  25. A. Fragata, M.Rosário Veiga, A.Velosa, Substitution ventilated render systems for historic masonry: Salt crystallization tests evaluation. Constr. Build. Mater. 102, 592–600 (2016) [CrossRef] [Google Scholar]
  26. V. Cnudde, W. De Boever, J. Dewanckele, T. De Kock, M. Boone, M.N. Boone, G. Silversmit, L. Vincze, E. Van Ranst, H. Derluyn, et al. Multi-disciplinary characterization and monitoring of sandstone (Kandla Grey) under different external conditions. Q. J. Eng. Geol. Hydrogeol. 46, 95–106 (2013) [CrossRef] [Google Scholar]
  27. T. Wijffels, B. Lubelli, Development of a new accelerated salt crystallization test. Heron 51, 63–75 (2006) [Google Scholar]
  28. T.D. Gonçalves, V. Brito, J. Musacchi, L. Pel, T.A. Saidov, J. Delgado Rodrigues, D. Costa, J.M. Mimoso Drying of porous building materials possibly contaminated with soluble salts: summary and findings of the DRYMASS research project. SWBSS2014 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures , 14-16 October,1–15 (2014) [Google Scholar]
  29. C. Nunes, Z. Slížková, D. Kȓivánková, Lime-based mortars with linseed oil: Sodium chloride resistance assessment and characterization of the degraded material. Period. di Mineral. 82, 411–427(2014) [Google Scholar]
  30. T. Wells, P. Binning, G. Willgoose, G. Hancock, Laboratory simulation of the salt weathering of schist: I. Weathering of schist blocks in a seasonally wet tropical environment. Earth Surf. Process. Landforms 31, 339–354 (2006) [CrossRef] [Google Scholar]
  31. S. Godts, R. Hendrickx, J. Clercq, The crystallization behavior of sodium magnesium sulfate in limestone. Swbss2014 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures , 14-16 October, 167–183 (2014) [Google Scholar]
  32. DIN 18946:2018-12 Lehmmauermörtel – Anforderungen, Prüfung und Kennzeichnung [Google Scholar]
  33. ASTM C1713-17 Standard Specification for Mortars for the Repair of Historic Masonry [Google Scholar]
  34. E.M Winkler, Stone in Architecture (1997) [Google Scholar]
  35. A179-2014 Mortar and grout for unit masonry [Google Scholar]
  36. B.V. Venkatarama Reddy, A.Gupta, Characteristics of cement-soil mortars. Mater. Struct. Constr. 38, 639–650 (2005) [CrossRef] [Google Scholar]
  37. NZS 4298:1998 Materials and Workmanship for Earth Buildings, Standards New Zealand, Wellington, New Zealand [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.