Open Access
Issue |
MATEC Web Conf.
Volume 403, 2024
SUBLime Conference 2024 – Towards the Next Generation of Sustainable Masonry Systems: Mortars, Renders, Plasters and Other Challenges
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 16 | |
Section | Mortar Properties | |
DOI | https://doi.org/10.1051/matecconf/202440302007 | |
Published online | 16 September 2024 |
- P. L. R. Lima, R. D. Toledo Filho., J. A. Melo Filho, Compressive Stress-strain Behaviour of Cement Mortar-composites Reinforced with Short Sisal Fibre. Mat. Res. 38-46 (2014). http://doi.org/10.1590/S1516-14392013005000181 [Google Scholar]
- A. R. Martin, M. A. Martins, L.H. C. Mattos, O. R. R. F. Silva, Caracterização Química e Estrutural de Fibra de Sisal da Variedade Agave Sisalana. Pol.: C. e Tecn. 40-46 (2009). [Google Scholar]
- R. C. Dante, F. M. S. Arévalo, L. Huerta, P. M. Ramos, L. M. N. Gracia, J. M. Gill. Composite Fiber Based on Sisal Fiber and Calcium Carbonate. J. of Nat. Fib. 121–135 (2014). https://doi.org/10.1080/15440478.2013.849644 [Google Scholar]
- F. A. Silva, N. Chawlab, R. D. Toledo Filho. An experimental investigation of the fatigue behavior of sisal fibers. Mat. Sci. and Eng. 90–95 (2009). [Google Scholar]
- M. E. A. Fidelis, T. V. C. Pereira, O. F. M. Gomes, F.A. Silva, R. D. Toledo Filho. The effect of fiber morphology on the tensile strength of natural fibers. J Mater. Res. Technol. 149–157 (2013). http://dx.doi.org/10.1016/j.jmrt.2013.02.003 [Google Scholar]
- F. A. Silva, B. Mobasher, R. D. Toledo Filho. Cracking mechanisms in durable sisal fiber reinforced cement composites. Cement & Concrete Composites 721–730 (2009). doi:10.1016/j.cemconcomp.2009.07.004. [Google Scholar]
- I. B. Silva Junior, L. M. S. Souza, F. A. Silva. Creep of pre-cracked sisal fiber reinforced cement based composites. Const. and Build. Mat. 293 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123511 [Google Scholar]
- J. R. Nayak, J. Bochen, M. Gołaszewska. Experimental studies on the effect of natural and synthetic fibers on properties of fresh and hardened mortar. Construction and Building Materials, 347 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128550 [Google Scholar]
- M.D. de Klerk, M. Kayondo, G.M. Moelich, W.I. de Villiers, R. Combrinck,W.P. Boshoff. Durability of chemically modified sisal fibre in cement-based composites. Const. and Build. Mat., 241 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117835 [CrossRef] [Google Scholar]
- R. S. Castoldi, L. M. S. Souza, F. Souto, M. Liebscher,V. Mechtcherine, F. A. Silva. Effect of alkali treatment on physical–chemical properties of sisal fibers and adhesion-based matrices. Construction and Building Materials, 345 (2022). https://doi.org/10.1016/j.conbuildmat.2022.128363 [CrossRef] [Google Scholar]
- M. G. Veigas, M. Najimi, B. Shafei. Cementitious composites made with natural fibers: Investigation of uncoated and coated sisal fibers. Case Studies in Construction Materials 16 (2022). https://doi.org/10.1016/j.cscm.2021.e00788 [CrossRef] [Google Scholar]
- J Li, B Kasal. The immediate and short-term degradation of the wood surface in a cement environment measured by AFM. Materials and Structures, 55, 179 (2022). [CrossRef] [Google Scholar]
- J Li, B Kasal. Degradation mechanism of the wood cell wall surface in a cement environment measured by atomic force microscopy. ASCE Journal of Materials in Civil Engineering. 35(7): 04023164 (2023). [CrossRef] [Google Scholar]
- T. Yimer, A. Gebre. Effect of Fiber Treatments on the Mechanical Properties of Sisal Fiber-Reinforced Concrete Composites. Advances in Civil Engineering, 15 (2023). https://doi.org/10.1155/2023/2293857 [Google Scholar]
- J. T. Kim, A. N. Netravali. Mercerization of sisal fibers: Effect of tension on mechanical properties of sisal fiber and fiber-reinforced composites. Composites: Part A 1245–1252, (2010). doi:10.1016/j.compositesa.2010.05.007 [Google Scholar]
- R. D. Toledo Filho, K. Ghavami, G. L. England, K. Scrivener. Development of vegetable fibre–mortar composites of improved durability. Cement & Concrete Composites, 185–196 (2003). PII: S09 5 8- 94 6 5( 02 )0 0 01 8 -5 [Google Scholar]
- S. R. I. Ferreira, P.R.L.I Lima, F.A.I Silva, R.D.I Toledo Filho. Effect of sisal fiber hornification on the fiber-matrix bonding characteristcs and bending behavior of cement based composites. Engineering Materials, 421-432(2014) doi:10.4028/www.scientific.net/KEM.600.421 [Google Scholar]
- S. R. Ferreira, F. A. Silva, P. R. L. Lima, R. D. Toledo Filho. Effect of fiber treatments on the sisal fiber properties and fiber–matrix bond in cement based systems. Construction and Building Materials 730–740 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.10.120 [Google Scholar]
- J. Claramunt, M. Ardanuy, J.A. Garcia-Hortal. Effect of drying and rewetting cycles on the structure and physicochemical characteristics of softwood fibres for reinforcement of cementitious composites. Carbohydr. Polym., 200–205 (2010). doi:10.1016/j.carbpol.2009.07.057 [Google Scholar]
- C. S. Kazmierczak, S. D. Schneider, O. Aguilera, C. C. Albert, M. Mancio. Rendering mortars with crumb rubber: Mechanical strength, thermal and fire properties and durability behaviour. Construction and Building Materials 253 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119002 [Google Scholar]
- P. Meshgin, Y. Xi, Y. Li. Utilization of phase change materials and rubber particles to improve thermaland mechanical properties of mortar. Construction and Building Materials, 713–721(2012). doi:10.1016/j.conbuildmat.2011.10.039 [Google Scholar]
- A.C. Corredor-Bedoya, R.A. Zoppi, A.L. Serpa. Composites of scrap tire rubber particles and adhesive mortar e noise insulation potential. Cement and Concrete Composites 45-66 (2017). http://dx.doi.org/10.1016/j.cemconcomp.2017.05.007 [Google Scholar]
- V. Letelier, M. Bustamante, P. Muñoz, S. Rivas, J. M. Ortega. Evaluation of mortars with combined use of fine recycled aggregates and waste crumb rubber. Journal of Building Engineering 43 (2021). https://doi.org/10.1016/j.jobe.2021.103226 [CrossRef] [Google Scholar]
- R. Di Mundo, S. Seara-Paz, B. González-Fonteboa, M. Notarnicola. Masonry and render mortars with tyre rubber as aggregate: Fresh state rheology and hardened state performances. Construction and Building Materials 245 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118359 [CrossRef] [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR 7215: Cimento Portland ― Determinação da resistência à compressão de corpos de prova cilíndricos. Rio de Janeiro: ABNT, 2019. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR 9778: Argamassa e Concreto Endurecidos - Determinação da absorção de água, índice de vazios e massa especifica. Rio de Janeiro: ABNT, 2009. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR 13279: argamassa para assentamento e revestimento - determinação da resistência à tração na flexão e à compressão. Rio de Janeiro: ABNT, 2005. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR 8522-2: Concreto endurecido - Determinação dos módulos de elasticidade e de deformação Parte 2: Módulo de elasticidade dinâmico pelo método das frequências naturais de vibração. Rio de Janeiro: ABNT, 2021. [Google Scholar]
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS – ABNT NBR 15630: Argamassa para assentamento e revestimento de paredes e tetos - Determinação do módulo de elasticidade dinâmico através da propagação de onda ultra-sônica. Rio de Janeiro: ABNT, 2009. [Google Scholar]
- L. S Dias, A. V. Se. Beserra, R. A. dos Santos, A. A. de Sousa, A. B. de Lira Neto, A. E. F. G. Landim, G. F. Barrozo, C. J. V. Silva. Incorporação de resíduos da produção de fibras de sisal em argamassa: Efeitos nas propriedades físicas e mecânicas. Matéria (Rio de Janeiro), v. 26, n. 3, 2021. https://doi.org/10.1590/S1517-707620210003.13034 [Google Scholar]
- E. T. Dawood, M. H. Abdullah. “Behavior of non-reinforced and reinforced green mortar with fibers” Open Engineering, vol. 11, no. 1, 2021, pp. 67-84. https://doi.org/10.1515/eng-2021-0006 [Google Scholar]
- M. Akbari, M. H. N. Tahamtan, S. Fallah-Valukolaee, M. R. Z. Herozi, M. A. Shirvani. Investigating fracture characteristics and ductility of lightweight concrete containing crumb rubber by means of WFM and SEM methods. Theoretical and applied fracture mechanics, v. 117, n. 103148, p. 103148, 2022. https://doi.org/10.1016/j.tafmec.2021.103148 [CrossRef] [Google Scholar]
- A. S. Sidhu, R. Siddique. Utilisation of crumb tire rubber in development of sustainable metakaolin based high strength concrete. Construction and building materials, v. 345, n. 128412, p. 128412, 2022. https://doi.org/10.1016/j.conbuildmat.2022.128412 [CrossRef] [Google Scholar]
- J. Liu, Y. Zhuge, X. Ma, M. Liu, Y. Liu, X. Wu, H. Xu. Physical and mechanical properties of expanded vermiculite (EV) embedded foam concrete subjected to elevated temperatures. Case studies in construction materials, v. 16, n. e01038, p. e01038, 2022. https://doi.org/10.1016/j.cscm.2022.e01038 [CrossRef] [Google Scholar]
- S. Dora, R. B. Barta, K.M. Mini. Study on foam concrete incorporated with expanded vermiculite/capric acid PCM – A novel thermal storage high-performance building material. Construction and building materials, v. 392, n. 131903, p. 131903, 2023. https://doi.org/10.1016/j.conbuildmat.2023.131903 [CrossRef] [Google Scholar]
- B. Bahja, A. Elouafi, A. Tizliouine, L.H. Omari. Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites. Journal of building engineering, v. 34, n. 102025, p. 102025, 2021. https://doi.org/10.1016/j.jobe.2020.102025 [CrossRef] [Google Scholar]
- PL. Meyyappan, S.D. Anitha Selvasofia, M. Asmitha, S. Janani Praveena, P. Simika. Experimental studies on partial replacement of crumb rubber as a fine aggregate in M30 grade concrete. Materials today: proceedings, v. 74, p. 985–992, 2023. https://doi.org/10.1016/j.matpr.2022.11.350 [CrossRef] [Google Scholar]
- Q. Lin, Z. Liu, J. Sun, L. Yu. Comprehensive modification of emulsified asphalt on improving mechanical properties of crumb rubber concrete. Construction and building materials, v. 369, n. 130555, p. 130555, 2023. https://doi.org/10.1016/j.conbuildmat.2023.130555 [CrossRef] [Google Scholar]
- A M. S. Hassan, H. Shoukry, P. Perumal, M. M. Abd El-razik, R. M. H. Aly, A. M. Y. Alzahrani. Evaluation of the thermo-physical, mechanical, and fire resistance performances of limestone calcined clay cement (LC3)-based lightweight rendering mortars. Journal of building engineering, v. 71, n. 106495, p. 106495, 2023. https://doi.org/10.1016/j.jobe.2023.106495 [CrossRef] [Google Scholar]
- K. H. Mo, H. J. Lee, M. Y. J. Liu, T. C. Ling. Incorporation of expanded vermiculite lightweight aggregate in cement mortar. Construction and building materials, v. 179, p. 302–306, 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.219 [CrossRef] [Google Scholar]
- X. Liu, J. Li, F. Li, J. Wang, H. Lu. Study on the properties of an ecotype mortar with rice husks and sisal fibers. Advances in civil engineering, v. 2021, p. 1–11, 2021. https://doi.org/10.1155/2021/5513303 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.