Open Access
Issue |
MATEC Web Conf.
Volume 402, 2024
The 4th International Conference on Engineering, Technology, and Innovative Researches (The 4th ICETIR 2022)
|
|
---|---|---|
Article Number | 02002 | |
Number of page(s) | 7 | |
Section | Electrical Engineering and Informatics | |
DOI | https://doi.org/10.1051/matecconf/202440202002 | |
Published online | 23 August 2024 |
- D. S, R. A, and H. S, “Data Hiding in Audio Signals Using Wavelet Transform with Enhanced Security,” in Computer Science & Information Technology ( CS & IT ), Academy & Industry Research Collaboration Center (AIRCC), Dec. 2013, pp. 137–146. doi: 10.5121/csit.2013.3914. [Google Scholar]
- Y. Xiang, I. Natgunanathan, D. Peng, G. Hua, and B. Liu, “Spread Spectrum Audio Watermarking Using Multiple Orthogonal PN Sequences and Variable Embedding Strengths and Polarities,” IEEEACM Trans. Audio Speech Lang. Process., vol. 26, no. 3, pp. 529–539, Mar. 2018, doi: 10.1109/TASLP.2017.2782487. [CrossRef] [Google Scholar]
- G. Hua, J. Huang, Y. Q. Shi, J. Goh, and V. L. L. Thing, “Twenty years of digital audio watermarking—a comprehensive review,” Signal Process., vol. 128, pp. 222–242, Nov. 2016, doi: 10.1016/j.sigpro.2016.04.005. [CrossRef] [Google Scholar]
- S. P. Singh Chauhan and S. A. M. Rizvi, “A survey: Digital audio watermarking techniques and applications,” in 2013 4th International Conference on Computer and Communication Technology (ICCCT), India: IEEE, Sep. 2013, pp. 185–192. doi: 10.1109/ICCCT.2013.6749625. [Google Scholar]
- P. K. Dhar and T. Shimamura, “Blind Audio Watermarking in Transform Domain Based on Singular Value Decomposition and ExponentialLog Operations,” Radioengineering, vol. 26, no. 2, pp. 552–561, Jun. 2017, doi: 10.13164/re.2017.0552. [CrossRef] [Google Scholar]
- V. Bhat K, I. Sengupta, and A. Das, “An adaptive audio watermarking based on the singular value decomposition in the wavelet domain,” Digit. Signal Process., vol. 20, no. 6, pp. 1547–1558, Dec. 2010, doi: 10.1016/j.dsp.2010.02.006. [CrossRef] [Google Scholar]
- M. Fan and H. Wang, “Chaos-based discrete fractional Sine transform domain audio watermarking scheme,” Comput. Electr. Eng., vol. 35, no. 3, pp. 506–516, May 2009, doi: 10.1016/j.compeleceng.2008.12.004. [CrossRef] [Google Scholar]
- U. Nair and G. K. Birajdar, “Compressed domain secure, robust and high-capacity audio watermarking,” Iran J. Comput. Sci., vol. 3, no. 4, pp. 217–232, Dec. 2020, doi: 10.1007/s42044020-00059-x. [CrossRef] [Google Scholar]
- A. Al-Haj, A. Mohammad, and L. Bata, “DWT– Based Audio Watermarking,” vol. 8, no. 3, p. 8, 2011. [Google Scholar]
- N. Trivedi, V. Kumar, S. Singh, S. Ahuja, and R. Chadha, “Speech Recognition by Wavelet Analysis,” Int. J. Comput. Appl., vol. 15, no. 8, pp. 27–32, Feb. 2011, doi: 10.5120/1968-2635. [Google Scholar]
- L. Novamizanti, G. Budiman, and B. A. Wibowo, “Optimasi Sistem Penyembunyian Data pada Audio menggunakan Sub-band Stasioner dan Manipulasi Rata-rata Statistik,” ELKOMIKA J. Tek. Energi Elektr. Tek. Telekomun. Tek. Elektron., vol. 6, no. 2, p. 165, Jul. 2018, doi: 10.26760/elkomika.v6i2.165. [Google Scholar]
- M.-J. Hwang, J. Lee, M. Lee, and H.-G. Kang, “SVD-Based Adaptive QIM Watermarking on Stereo Audio Signals,” IEEE Trans. Multimed., vol. 20, no. 1, pp. 45–54, Jan. 2018, doi: 10.1109/TMM.2017.2721642. [CrossRef] [Google Scholar]
- T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. Hoboken, New Jersey: John Wiley & Sons, Inc, 2006. [Google Scholar]
- I. D. Irawati, G. Budiman, K. Masykuroh, Z. H. Pradana, and A. Fahmi, “High Payload Qr-Based Data Hiding Using Secured Compressed Watermark in Polar Domain,” in Frontiers in Artificial Intelligence and Applications, A. J. Tallón-Ballesteros, Ed., IOS Press, 2021. doi: 10.3233/FAIA210285. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.