Open Access
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 03003
Number of page(s) 17
Section Structural and Transportation Engineering
Published online 03 July 2024
  1. Z. Zhang, K. Pang, L. Xu, Y. Zou, J. Yang, and C. Wang, “The bond properties between UHPC and stone under different interface treatment methods,” Constr. Build. Mater., vol. 365, no. 130092, p. 130092, 2023. [CrossRef] [Google Scholar]
  2. C. Zhu, T. Xue, Z. Ma, W. Fan, and T. Liu, “Mechanically strong and thermally insulating polyimide aerogel fibers reinforced by prefabricated long polyimide fibers,” ACS Appl. Mater. Interfaces, vol. 15, no. 9, pp. 12443–12452, 2023. [CrossRef] [Google Scholar]
  3. L. Liu et al., “Improving corrosion resistance of epoxy coating by optimizing the stress distribution and dispersion of SiO2 filler,” Prog. Org. Coat., vol. 179, no. 107522, p. 107522, 2023. [CrossRef] [Google Scholar]
  4. L. Biolzi, S. Cattaneo, P. Crespi, M. Scamardo, and N. Vafa, “Diagonal compression cyclic testing of unreinforced and reinforced masonry walls,” Constr. Build. Mater., vol. 363, no. 129839, p. 129839, 2023. [CrossRef] [Google Scholar]
  5. M. Fareghian, M. Afrazi, and A. Fakhimi, “Soil reinforcement by waste tire textile fibers: Small-scale experimental tests,” J. Mater. Civ. Eng., vol. 35, no. 2, 2023. [CrossRef] [Google Scholar]
  6. K. Aruchamy et al., “Influence of weave arrangements on mechanical characteristics of cotton and bamboo woven fabric reinforced composite laminates,” J. Reinf. Plast. Compos., vol. 42, no. 15–16, pp. 776–789, 2023. [CrossRef] [Google Scholar]
  7. M. Deng, Z. Dong, J. Dai, and X. Zhao, “Out-of-plane strengthening of URM walls using different fiber-reinforced materials,” Constr. Build. Mater., vol. 362, no. 129597, p. 129597, 2023. [CrossRef] [Google Scholar]
  8. A. Castellano, A. Fraddosio, D. V. Oliveira, M. D. Piccioni, E. Ricci, and E. Sacco, “An effective numerical modelling strategy for FRCM strengthened curved masonry structures,” Eng. Struct., vol. 274, no. 115116, p. 115116, 2023. [CrossRef] [Google Scholar]
  9. S. Olhan, S. K. Behera, V. Khatkar, and B. K. Behera, “Investigating the impact of different machinability processes and fibre architecture on the bearing performance of pin-loaded textile structural composites for automotive applications: Experimental and finite element analysis,” J. Manuf. Process., vol. 86, pp. 30–55, 2023. [CrossRef] [Google Scholar]
  10. M. Mercuri, M. Vailati, and A. Gregori, “Lime-based mortar reinforced with randomly oriented polyvinyl-alcohol (PVA) fibers for strengthening historical masonry structures,” Developments in the Built Environment, vol. 14, no. 100152, p. 100152, 2023. [CrossRef] [Google Scholar]
  11. E. Syerko et al., “Benchmark exercise on image-based permeability determination of engineering textiles: Microscale predictions,” Compos. Part A Appl. Sci. Manuf., vol. 167, no. 107397, p. 107397, 2023. [CrossRef] [Google Scholar]
  12. Y. Li et al., “In-situ interface reinforcement for 3D printed fiber electrodes,” Energy Storage Mater., vol. 57, pp. 497–507, 2023. [CrossRef] [Google Scholar]
  13. Y.-H. Jin, Z.-Y. Zhou, B.-L. Bao, H.-Y. Wang, and T. Wang, “Experimental study on the seismic performance of clay brick masonry wall strengthened with stainless steel strips,” J. Build. Eng., vol. 69, no. 106076, p. 106076, 2023. [CrossRef] [Google Scholar]
  14. M. Kalthoff et al., “Fabrication of lightweight, carbon textile reinforced concrete components with internally nested lattice structure using 2-layer extrusion by LabMorTex,” Constr. Build. Mater., vol. 395, no. 132334, p. 132334, 2023. [CrossRef] [Google Scholar]
  15. L. Estevan, B. Torres, F. B. Varona, F. J. Baeza, and S. Ivorra, “Shear strengthening of masonry walls with Textile Reinforced Mortars (TRM) under high temperature exposure,” J. Build. Eng., vol. 63, no. 105511, p. 105511, 2023. [CrossRef] [Google Scholar]
  16. J. Platen, I. Zreid, and M. Kaliske, “A nonlocal microplane approach to model textile reinforced concrete at finite deformations,” Int. J. Solids Struct., vol. 267, no. 112151, p. 112151, 2023. [CrossRef] [Google Scholar]
  17. S. Li, X. Chen, Z. Liu, Y. Lu, and H. Wang, “Axial behavior of pre-damaged RC columns strengthened with CFRP textile grid-reinforced ECC matrix composites,” J. Build. Eng., vol. 73, no. 106813, p. 106813, 2023. [CrossRef] [Google Scholar]
  18. P. Preinstorfer, S. Yanik, J. Kirnbauer, J. M. Lees, and A. Robisson, “Cracking behaviour of textile-reinforced concrete with varying concrete cover and textile surface finish,” Compos. Struct., vol. 312, no. 116859, p. 116859, 2023. [CrossRef] [Google Scholar]
  19. M. Angiolilli, A. Gregori, and G. Cusatis, “Simulating the nonlinear mechanical behavior of FRCM-strengthened irregular stone masonry walls,” Int. J. Archit. Heritage: Conserv. Anal. Restor., pp. 1–17, 2021. [Google Scholar]
  20. T. Rotunno, M. Fagone, E. Grande, and G. Milani, “FRCM-to-masonry bonding behaviour in the case of curved surfaces: Experimental investigation,” Compos. Struct., vol. 313, no. 116913, p. 116913, 2023. [CrossRef] [Google Scholar]
  21. G. Barlow, D. Mollenhauer, E. Zhou, J. Whitcomb, and S. E. Stapleton, “Inducing fiber entanglement to achieve realistic tow fiber volume fractions in textile reinforced composite models,” Comput. Aided Des., vol. 162, no. 103546, p. 103546, 2023. [CrossRef] [Google Scholar]
  22. N. Ranjan, S. Banerjee, S. Nayak, and S. Das, “Exploring applicability of recycled nylon fiber reinforced mortar in joints and plaster to enhance the bond strength, in-plane and out-of-plane capacity of masonry structures,” J. Build. Eng., vol. 72, no. 106744, p. 106744, 2023. [CrossRef] [Google Scholar]
  23. S. K. John, Y. Nadir, N. K. Safwan, P. C. Swaliha, K. Sreelakshmi, and V. A. Nambiar, “Tensile and bond behaviour of basalt and glass textile reinforced geopolymer composites,” J. Build. Eng., vol. 72, no. 106540, p. 106540, 2023. [CrossRef] [Google Scholar]
  24. N. P. Tran, C. Gunasekara, D. W. Law, S. Houshyar, S. Setunge, and A. Cwirzen, “Comprehensive review on sustainable fiber reinforced concrete incorporating recycled textile waste,” J. Sustain. Cem.-based Mater., vol. 11, no. 1, pp. 28–42, 2022. [Google Scholar]
  25. L. Garcia-Ramonda, L. Pelà, P. Roca, and G. Camata, “Cyclic shear-compression testing of brick masonry walls repaired and retrofitted with basalt textile reinforced mortar,” Compos. Struct., vol. 283, no. 115068, p. 115068, 2022. [CrossRef] [Google Scholar]
  26. H. Y. Zhang, H. Y. Liu, V. Kodur, M. Y. Li, and Y. Zhou, “Flexural behavior of concrete slabs strengthened with textile reinforced geopolymer mortar,” Compos. Struct., vol. 284, no. 115220, p. 115220, 2022. [CrossRef] [Google Scholar]
  27. Z. Kamble, B. K. Behera, T. Kimura, and I. Haruhiro, “Development and characterization of thermoset nanocomposites reinforced with cotton fibres recovered from textile waste,” J. Ind. Text., vol. 51, no. 2_suppl, pp. 2026S–2052S, 2022. [CrossRef] [Google Scholar]
  28. E. Bertolesi, M. Fagone, T. Rotunno, E. Grande, and G. Milani, “Experimental characterization of the textile-to-mortar bond through distributed optical sensors,” Constr. Build. Mater., vol. 326, no. 126640, p. 126640, 2022. [CrossRef] [Google Scholar]
  29. P. Meriggi, C. Caggegi, A. Gabor, and G. de Felice, “Shear-compression tests on stone masonry walls strengthened with basalt textile reinforced mortar (TRM),” Constr. Build. Mater., vol. 316, no. 125804, p. 125804, 2022. [CrossRef] [Google Scholar]
  30. L. Guo, M. Deng, H. Chen, R. Li, X. Ma, and Y. Zhang, “Experimental study on pre-damaged RC beams shear-strengthened with textile-reinforced mortar (TRM),” Eng. Struct., vol. 256, no. 113956, p. 113956, 2022. [CrossRef] [Google Scholar]
  31. F. Majstorović, V. Sebera, M. Mrak, S. Dolenec, M. Wolf, and L. Marrot, “Impact of metakaolin on mechanical performance of flax textile-reinforced cement-based composites,” Cem. Concr. Compos., vol. 126, no. 104367, p. 104367, 2022. [CrossRef] [Google Scholar]
  32. L. Estevan, F. B. Varona, F. J. Baeza, B. Torres, and D. Bru, “Textile Reinforced Mortars (TRM) tensile behavior after high temperature exposure,” Constr. Build. Mater., vol. 328, no. 127116, p. 127116, 2022. [CrossRef] [Google Scholar]
  33. L. Garcia-Ramonda, L. Pelà, P. Roca, and G. Camata, “Experimental cyclic behaviour of shear masonry walls reinforced with single and double layered Steel Reinforced Grout,” Constr. Build. Mater., vol. 320, no. 126053, p. 126053, 2022. [CrossRef] [Google Scholar]
  34. S. Gopinath, C. K. Madheswaran, J. Prabhakar, K. G. Thivya Devi, and C. Lakshmi Anuhya, “Strengthening of unreinforced brick masonry panel using cast-in-place and precast textile-reinforced concrete,” J. Earthq. Eng., vol. 26, no. 3, pp. 1209–1227, 2022. [CrossRef] [Google Scholar]
  35. P. Xu, Y. Cui, J. Dai, M. Zhang, and Y. Ding, “High-temperature deterioration mechanism of textile-reinforced concrete with different cementitious materials,” J. Mater. Civ. Eng., vol. 34, no. 1, 2022. [Google Scholar]
  36. P. D. Gkournelos, L. D. Azdejković, and T. C. Triantafillou, “Innovative and Eco-friendly solutions for the seismic retrofitting of natural stone masonry walls with textile reinforced mortar: Inand out-of-plane behavior,” J. Compos. Constr., vol. 26, no. 1, 2022. [CrossRef] [Google Scholar]
  37. N. Ranjan, S. Banerjee, S. Nayak, and S. Das, “Efficacy of waste plastic towards enhancement of shear and flexure carrying capacity of masonry structures,” J. Clean. Prod., vol. 365, no. 132669, p. 132669, 2022. [CrossRef] [Google Scholar]
  38. Q. S. Khan, T. J. McCarthy, and M. N. Sheikh, “Experimental investigations of foamed concrete with recycled waste glass powder wall panels,” Struct. Concr., vol. 23, no. 6, pp. 3929–3944, 2022. [CrossRef] [Google Scholar]
  39. K. A. S. Medeiros, R. A. Palhares, G. A. Parsekian, N. G. Shrive, and F. S. Fonseca, “In-plane behavior and seismic performance of differently detailed, multi-story, perforated, partially grouted masonry walls,” Eng. Struct., vol. 271, no. 114941, p. 114941, 2022. [CrossRef] [Google Scholar]
  40. A. Dahlhoff, C. Morales Cruz, and M. Raupach, “Influence of selected impregnation materials on the tensile strength for carbon textile reinforced concrete at elevated temperatures,” Buildings, vol. 12, no. 12, p. 2177, 2022. [CrossRef] [Google Scholar]
  41. W. Xu, T. Zhang, X. Chen, Q. Miao, S. Wang, and D. Du, “Experimental and numerical investigation on the seismic performance of masonry walls reinforced by PC panels,” J. Build. Eng., vol. 58, no. 105049, p. 105049, 2022. [CrossRef] [Google Scholar]
  42. T. Li, M. Deng, M. Jin, and Y. Zhang, “Experimental study on axial compressive behavior of full-scale masonry columns strengthened with reinforced high ductile concrete (RHDC),” Eng. Struct., vol. 252, no. 113650, p. 113650, 2022. [CrossRef] [Google Scholar]
  43. P. Sadrolodabaee, J. Claramunt, M. Ardanuy, and A. de la Fuente, “Mechanical and durability characterization of a new textile waste micro-fiber reinforced cement composite for building applications,” Case Stud. Constr. Mater., vol. 14, no. e00492, p. e00492, 2021. [Google Scholar]
  44. J. Donnini, G. Maracchini, S. Lenci, V. Corinaldesi, and E. Quagliarini, “TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior,” Constr. Build. Mater., vol. 272, no. 121643, p. 121643, 2021. [CrossRef] [Google Scholar]
  45. S. Shafaei, A. H. Varma, J. Seo, and R. Klemencic, “Cyclic lateral loading behavior of composite plate shear walls/concrete filled,” J. Struct. Eng. (N. Y.), vol. 147, no. 10, p. 04021145, 2021. [CrossRef] [Google Scholar]
  46. B. Torres, S. Ivorra, F. Javier Baeza, L. Estevan, and B. Varona, “Textile reinforced mortars (TRM) for repairing and retrofitting masonry walls subjected to in-plane cyclic loads. An experimental approach,” Eng. Struct., vol. 231, no. 111742, p. 111742, 2021. [CrossRef] [Google Scholar]
  47. Z. Kamble and B. K. Behera, “Sustainable hybrid composites reinforced with textile waste for construction and building applications,” Constr. Build. Mater., vol. 284, no. 122800, p. 122800, 2021. [CrossRef] [Google Scholar]
  48. A. Furtado, H. Rodrigues, A. Arêde, J. Melo, and H. Varum, “The use of textile-reinforced mortar as a strengthening technique for the infill walls out-of-plane behaviour,” Compos. Struct., vol. 255, no. 113029, p. 113029, 2021. [CrossRef] [Google Scholar]
  49. S. Ivorra, B. Torres, F. J. Baeza, and D. Bru, “In-plane shear cyclic behavior of windowed masonry walls reinforced with textile reinforced mortars,” Eng. Struct., vol. 226, no. 111343, p. 111343, 2021. [CrossRef] [Google Scholar]
  50. R. Xin and P. Ma, “Experimental investigation on the in-plane seismic performance of damaged masonry walls repaired with grout-injected ferrocement overlay,” Constr. Build. Mater., vol. 282, no. 122565, p. 122565, 2021. [CrossRef] [Google Scholar]
  51. M. Vailati, M. Mercuri, M. Angiolilli, and A. Gregori, “Natural-fibrous lime-based mortar for the rapid retrofitting of heritage masonry buildings,” Fibers (Basel), vol. 9, no. 11, p. 68, 2021. [CrossRef] [Google Scholar]
  52. P. Meriggi, S. De Santis, S. Fares, and G. de Felice, “Design of the shear strengthening of masonry walls with fabric reinforced cementitious matrix,” Constr. Build. Mater., vol. 279, no. 122452, p. 122452, 2021. [CrossRef] [Google Scholar]
  53. N. Trochoutsou, M. Di Benedetti, K. Pilakoutas, and M. Guadagnini, “Bond of flax textile-reinforced mortars to masonry,” Constr. Build. Mater., vol. 284, no. 122849, p. 122849, 2021. [CrossRef] [Google Scholar]
  54. P. Cassese, C. Balestrieri, L. Fenu, D. Asprone, and F. Parisi, “In-plane shear behaviour of adobe masonry wallets strengthened with textile reinforced mortar,” Constr. Build. Mater., vol. 306, no. 124832, p. 124832, 2021. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.