Open Access
MATEC Web Conf.
Volume 400, 2024
5th International Conference on Sustainable Practices and Innovations in Civil Engineering (SPICE 2024)
Article Number 02001
Number of page(s) 14
Section Geotechnical and Environmental Engineering
Published online 03 July 2024
  1. CPCB. Central Pollution Control Board, MSW Generation & Composition,, (2018) – accessed on Dec. 2023 [Google Scholar]
  2. I. J. Alhulia, U. Patel, Solid Waste Management in India An Assessment of Resource Recovery and Environmental Impact, ICRIER 356, 01–48 (2018) [Google Scholar]
  3. R. K. Annepu, Report on sustainable solid waste management in India, WERTC 1–189, (2012) [Google Scholar]
  4. The Economist, Daily chart Global waste generation will nearly double by 2050: Graphic detail,, (2018) - accessed on Dec. 2023 [Google Scholar]
  5. P. Sridevi, M. Modi, L. Kesavarao, A review on integrated solid waste management, Int. J. Eng. Sci. Adv. Tech. 2, 1491–1499 (2012) [Google Scholar]
  6. A. Siddiqua, JN. Hahladakis, WAKA. Al-Attiya, An overview of the environmental pollution and health effects associated with waste landfilling and open dumping, Environ. Sci. Pollut. Res. Int. 39, 58514–58536 (2022) [CrossRef] [Google Scholar]
  7. S. Kaza, L. Yap, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, World Bank Group (2018) accessed on Dec. 2023 [Google Scholar]
  8. R. Waheeb, Waste Recycling to Save Energy by Using AI,, (2023) accessed on Dec. 2023 [Google Scholar]
  9. D.P. Mishra, S.K. Das, A Study of Physico Chemical and Mineralogical Properties of Talcher Coal Fly Ash for Stowing in Underground Coal Mines, Mat. Charact. 61 1252–1259 (2010) [CrossRef] [Google Scholar]
  10. D. Das, P.K. Rout, Synthesis, Characterization and Properties of Fly Ash Based Geopolymer Materials, J. M. Eng. Perf. 30, 3213–3231 (2021) [CrossRef] [Google Scholar]
  11. A.K. Ram, S. Mohanty, State of the art review on physiochemical and engineering characteristics of fly ash and its applications, Int. J. C. Sci. Tech. 9, 9 (2022) [CrossRef] [Google Scholar]
  12. S. Hsu, M. Chi, R. Huang, Effect of fineness and replacement ratio of ground fly ash on properties of blended cement mortar, Const. B.M. J. 176, 250–258 (2018) [Google Scholar]
  13. D.K. Nayak, P. Abhilash, R. Singh, V. Kumar, Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. C. M. 6, 1–35 (2022) [Google Scholar]
  14. ASTM Std. C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for use in Concrete, ASTM (2019) [Google Scholar]
  15. K. Singh, Stabilization of Expansive Soils with Lime and Fly Ash, Book on stabilization of expansive soils with Lime and Fly ash, 1–44 (2023). [Google Scholar]
  16. E. Geliga, D.S.A. Ismail, Geotechnical Properties of Fly Ash and its Application on Soft Soil Stabilization, J.C.E.S.T. 1, 1–6 (2010) [Google Scholar]
  17. V. Bijina, P.J. Jandas, S. Joseph, Recent trends in industrial and academic developments of green tyre technology, Polymer Bulletin, 80, 8215–8244 (2023) [CrossRef] [Google Scholar]
  18. ASTM Std. D6270-08, Standard practice for use of scrap tires in civil engineering applications, ASTM (2008) [Google Scholar]
  19. V. Vinot, B. Singh, Shredded tyre-sand as fill material for embankment applications, J. Environ. Res. Dev. 7 1622–1627 (2013) [Google Scholar]
  20. S. Bali Reddy, A. Murali Krishna, R. Krishna Reddy, Sustainable Utilization of Scrap Tire Derived Geomaterials for Geotechnical Applications, Ind. Geo. J. 48 1–16 (2017) [Google Scholar]
  21. S.V. Sivapriya, N. Charumathy, Effect of crumb rubber on inorganic and high compressible clay, Adv. Mat. Met. 67–73 (2018) [Google Scholar]
  22. M.A. Farooq, S. Nimbalkar, B. Fatahi, Sustainable Applications of Tyre-derived aggregates for Railway Transportation Infrastructure, Sust. Inn. Trans. Inf. Geo. 14 11715 (2022) [Google Scholar]
  23. L. Du, Y. Feng, W. Lu, L. Kong, Z. Yang, Evolutionary game analysis of stakeholders’ decision-making behaviors in construction and demolition waste management, Environ. Imp. Assess. Rev. 84, 106408 (2020) [CrossRef] [Google Scholar]
  24. K. Wiwat, T. Seree, P. Lapyote, Effective Modelling for Construction Activities of Recycled Aggregate Concrete Using Artificial Neural Network, J. Const. Eng. Man. 148, (2021). [Google Scholar]
  25. H. He, C. Zhang, J. Yang, M. Li, W. Fu, K. S., D. Zhang, S. Liu, Characterization of recycled concrete aggregate (RCA) particles for geotechnical engineering applications: Particle strength and interparticle contact behavior, Const. Build. Mat. 407, 133532 (2023) [CrossRef] [Google Scholar]
  26. E. Soból, W. Sus, A. Głuchowski, K. Gabryś, A. Szymański, Application of recycled concrete aggregate in road engineering, 17th Int. Multidis. Sci. Geo. Conf. 17, 55–62 (2017) [Google Scholar]
  27. J. Kawalec, S. Kwiecien, A. Pilipenko, J. Rybak, Application of Crushed Concrete in Geotechnical Engineering – Selected Issues, IOP Conf. Series: E. Env. Sci. 95, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.