Open Access
Issue
MATEC Web of Conf.
Volume 399, 2024
2024 3rd International Conference on Advanced Electronics, Electrical and Green Energy (AEEGE 2024)
Article Number 00009
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202439900009
Published online 24 June 2024
  1. G. Chen, Y. Xu, X. Yuan, et al. Research on electrical parameter modeling of flexible photovoltaic cell arrays. J. 46, 134–142 (2020). [Google Scholar]
  2. W. Zheng, W. Zheng, Z. Li, et al. Current status and progress trends of online monitoring technology for photovoltaic power plants .J . 58, 1–7 (2021). [Google Scholar]
  3. Y. Zhang. Power dispatching can be predicted China Strategic Emerging Industries, J. 14–16 (2021). [Google Scholar]
  4. Lateko, Andi AH, et al. Stacking ensemble method with the RNN meta-learner for short-term PV power forecasting, Energies 14. 16 , 4733 (2021). [Google Scholar]
  5. M. N., Akhter, S., Mekhilef, H., Mokhlis, et al. An hour-ahead PV power forecasting method based on an RNN-LSTM model for three different PV plants, Energies, J. 15 , 2243(2022). [Google Scholar]
  6. Zhen, Hao, et al. Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information, Energy 231, 120908 (2021). [Google Scholar]
  7. Qing, angyun, N. Yugang. Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM, Energy 148. 461–468 (2018). [Google Scholar]
  8. Chen, Hailang, anfa Chang. Photovoltaic power prediction of LSTM model based on Pearson feature selection, Energy Reports 7. 1047–1054 (2021). [Google Scholar]
  9. Dai, Yeming, et al. LOWESS smoothing and Random Forest based GRU model: A short-term photovoltaic power generation forecasting method, Energy 256. 124661(2022). [Google Scholar]
  10. Lago, Jesus, F. D. Ridder, B. D. Schutter. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms, Applied Energy 221. 386–405 (2018). [Google Scholar]
  11. S. M. Babbar, C. Y. Lau, K. F. Thang. Long term solar power generation prediction using adaboost as a hybrid of linear and non-linear machine learning model, International Journal of Advanced Computer Science and Applications. J.12(11) (2021). [Google Scholar]
  12. W. Hu, X. Zhang, L. Zhu, et al. Short-term photovoltaic power prediction based on similar days and improved SOA-DBN model, IEEE Access. J. 9, 1958-1971 (2020). [Google Scholar]
  13. T. Limouni, R. Yaagoubi, K. Bouziane, et al. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model, Renewable Energy. J. 205, 1010–1024 (2023). [Google Scholar]
  14. H. Li, G. Ma, Y. Meng. Short-term photovoltaic output prediction model based on MOSMA feature selection and TCN, IEEE. C.1800-1806 (2023). [Google Scholar]
  15. Shih, Y. Shun, K. S. Fan, L. Hung-yi. Temporal pattern attention for multivariate time series forecasting, Machine Learning 108. 1421–1441 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.