Open Access
Issue
MATEC Web Conf.
Volume 397, 2024
3rd International Conference on Civil Engineering and Construction Technology (ICECon2024)
Article Number 03002
Number of page(s) 19
Section Structures and Materials
DOI https://doi.org/10.1051/matecconf/202439703002
Published online 28 May 2024
  1. R. Djamaluddin, P. L. Frans, and R. Irmawati, “Flexural Capacity of the Concrete Beams Reinforced by Steel Truss System,” MATEC Web of Conferences, vol. 138, pp. 1–8, Dec. (2017), doi: 10.1051/MATECCONF/201713802003. [Google Scholar]
  2. Karunanidhi S, “INVESTIGATION ON SPIRAL STIRRUPS IN REINFORCED CONCRETE BEAMS,” International Journal of Novel Research in Civil Structural and Earth Sciences, vol. 6, no. 3, pp. 14–28, 2019, Accessed: Aug. 03, (2022). [Online]. Available: www.noveltyjournals.com [Google Scholar]
  3. N. Shatarat, H. M. Mahmoud, and H. Katkhuda, “Shear capacity investigation of self compacting concrete beams with rectangular spiral reinforcement,” Constr Build Mater, vol. 189, pp. 640–648, Nov. (2018), https://doi.org/10.1016/j.conbuildmat.2018.09.046 [CrossRef] [Google Scholar]
  4. P. Colajanni, L. La Mendola, G. Mancini, A. Recupero, and N. Spinella, “Shear capacity in concrete beams reinforced by stirrups with two different inclinations,” Eng Struct, vol. 81, no. 1, pp. 444–453, Dec. (2014), doi: 10.1016/j.engstruct.2014.10.011. [CrossRef] [Google Scholar]
  5. L. Jin, T. Wang, X. ang Jiang, and X. Du, “Size effect in shear failure of RC beams with stirrups: Simulation and formulation,” Eng Struct, vol. 199, p. 109573, Nov. (2019), https://doi.org/10.1016/j.engstruct.2019.109573 [CrossRef] [Google Scholar]
  6. W. Mansour and B. A. Tayeh, “Shear Behaviour of RC Beams Strengthened by Various Ultrahigh Performance Fibre-Reinforced Concrete Systems,” Advances in Civil Engineering, vol. 2020, no. 3, pp. 1–18, Jul. (2020), https://doi.org/10.1155/2020/2139054 [CrossRef] [Google Scholar]
  7. B. R. Bello and O. G. Dela Cruz, “Shear and Flexural Performance of Reinforced Concrete Beams with Modified Shear Reinforcement: A Literature Review,” vol. 374. (2024). https://doi.org/10.1007/978-981-99-4229-9_9 [Google Scholar]
  8. T. C. Herring, T. Nyomboi, and J. N. Thuo, “Ductility and cracking behavior of reinforced coconut shell concrete beams incorporated with coconut shell ash,” Results in Engineering, vol. 14, p. 100401, Jun. (2022), https://doi.org/10.1016/j.rineng.2022.100401 [CrossRef] [Google Scholar]
  9. A. A. Ibrahim, N. H. AL-Shareef, M. H. Jaber, R. F. Hassan, H. H. Hussein, and N. H. Al-Salim, “Experimental investigation of flexural and shear behaviors of reinforced concrete beam containing fine plastic waste aggregates,” Structures, vol. 43, pp. 834–846, Sep. (2022), https://doi.org/10.1016/j.istruc.2022.07.019 [CrossRef] [Google Scholar]
  10. S. A. Yıldızel et al., “Experimental investigation and analytical prediction of flexural behaviour of reinforced concrete beams with steel fibres extracted from waste tyres,” Case Studies in Construction Materials, vol. 19, p. e02227, Dec. (2023), https://doi.org/10.1016/j.cscm.2023.e02227 [CrossRef] [Google Scholar]
  11. N. Mejía, A. Sarango, and A. Espinosa, “Flexural and shear strengthening of RC beams reinforced with externally bonded CFRP laminates postfire exposure by experimental and analytical investigations,” Eng Struct, vol. 308, p. 117995, Jun. (2024), https://doi.org/10.1016/j.engstruct.2024.117995 [CrossRef] [Google Scholar]
  12. C. Daniel, R. O. Onchiri, and B. O. Omondi, “Structural behaviour of reinforced concrete beams containing recycled polyethylene terephthalate and sugarcane bagasse ash,” Applications in Engineering Science, vol. 18, p. 100178, Jun. (2024), https://doi.org/10.1016/j.apples.2024.100178 [CrossRef] [Google Scholar]
  13. W. T. Segui, Steel Design, 6th ed. (Cengage Learning, 2017). [Google Scholar]
  14. J. A. Apeh and O. G. Okoli, “Evaluation of Ductility Index of Concrete Beams Reinforced with Rebars Milled from Scrap Metals,” Concrete Research Letters, vol. 7, no. 2, pp. 56–68, May (2016). [Google Scholar]
  15. M. B. M and N. Vedic, “Shear Capacity of RC Beams with Different Patterns of Spiral Reinforcements,” International Journal of Engineering Research & Technology, vol. 6, no. 6, Apr. (2018), doi: 10.17577/IJERTCONV6IS06017. [Google Scholar]
  16. F. F. Manggapis, S. D. A. Kumar, J. R. P. G. Lucena, A. P. I. Carabbacan, and O. G. Dela Cruz, “Advancements in Concrete Incorporation: Harnessing the Potential of Crumb Rubber Tires as Sustainable Alternatives to Fine Aggregates,” (2023), pp. 195–205. doi: 10.1007/978-3-031-42588-2_16. [Google Scholar]
  17. F. Cayanan, O. G. Dela Cruz, J. M. Jacinto, A. I. Sawadjaan, and A. A. Hawari, “Engineering Cementitious Composite as Seismic Isolation: A Review of Its Application as Bendable Concrete,” (2024), pp. 163–175. doi: 10.1007/978-981-994229-9_15. [Google Scholar]
  18. A. P. I. Carabbacan and T. A. Amatosa, “Effects of Polypropylene Fibers from Single-Use Facemasks on the Microstructure of Normal Cementitious Composites,” (2023), pp. 183–193. doi: 10.1007/978-3-031-42588-2_15. [Google Scholar]
  19. A. Saraswat, A. Kumar Parashar, and R. Bahadur, “Effect of coconut shell ash substitute with cement on the mechanical properties of cement concrete,” Mater Today Proc, Nov. (2023), https://doi.org/10.1016/j.matpr.2023.11.014 [Google Scholar]
  20. P. Das, S. Chakraborty, and S. V. Barai, “Flexural behaviour of fly ash incorporated ferrochrome slag aggregate reinforced concrete beam,” Journal of Building Engineering, vol. 76, p. 107317, Oct. (2023), https://doi.org/10.1016/j.jobe.2023.107317 [CrossRef] [Google Scholar]
  21. N. Bheel et al., “Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber,” Heliyon, vol. 10, no. 2, p. e24313, Jan. (2024), https://doi.org/10.1016/j.heliyon.2024.e24313 [CrossRef] [Google Scholar]
  22. F. Yu, M. Wang, D. Yao, and Y. Liu, “Experimental research on flexural behavior of post-tensioned self-compacting concrete beams with recycled coarse aggregate,” Constr Build Mater, vol. 377, p. 131098, May (2023), https://doi.org/10.1016/j.conbuildmat.2023.131098 [CrossRef] [Google Scholar]
  23. D. Gao, F. Luo, Y. Yan, J. Tang, and L. Yang, “Experimental investigation on the flexural performance and damage process of steel fiber reinforced recycled coarse aggregate concrete,” Structures, vol. 51, pp. 1205–1218, May (2023), https://doi.org/10.1016/j.istruc.2023.03.122 [CrossRef] [Google Scholar]
  24. M. Elsayed, S. R. Abd-Allah, M. Said, and A. A. El-Azim, “Structural performance of recycled coarse aggregate concrete beams containing waste glass powder and waste aluminum fibers,” Case Studies in Construction Materials, vol. 18, p. e01751, Jul. (2023), https://doi.org/10.1016/j.cscm.2022.e01751 [CrossRef] [Google Scholar]
  25. Y. Li, M. Wu, W. Wang, and X. Xue, “Shear Behavior of RC Beams Strengthened by External Vertical Prestressing Rebar,” Advances in Civil Engineering, vol. 2021, pp. 1–12, Mar. (2021), https://doi.org/10.1155/2021/5483436 [Google Scholar]
  26. D.-Y. Yoo and J.-M. Yang, “Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams,” Cem Concr Compos, vol. 87, pp. 137–148, Mar. (2018), https://doi.org/10.1016/j.cemconcomp.2017.12.010 [CrossRef] [Google Scholar]
  27. L. Biolzi and S. Cattaneo, “Response of steel fiber reinforced high strength concrete beams: Experiments and code predictions,” Cem Concr Compos, vol. 77, pp. 1–13, Mar. (2017), https://doi.org/10.1016/j.cemconcomp.2016.12.002 [CrossRef] [Google Scholar]
  28. G. Chethan, J. Sanjith, A. Ranjith, and B. M. Kiran, “Shear Strength Capacity of Normal and High Strength Concrete Beams Bonded by CFRP Wraps,” International Journal of Engineering and Advanced Technology (IJEAT), vol. 4, no. 1, Oct. (2014). [Google Scholar]
  29. Y. Fritih, T. Vidal, A. Turatsinze, and G. Pons, “Flexural and shear behavior of steel fiber reinforced SCC beams,” KSCE Journal of Civil Engineering, vol. 17, no. 6, pp. 1383–1393, Sep. (2013), doi: 10.1007/s12205-013-1115-1. [CrossRef] [Google Scholar]
  30. S. M. Abd-Alla, W. W. Ibrahim, M. M. Hashem, and A. S. Eisa, “Shear strength of normal, medium and high strength reinforced concrete beams,” pp. 1–26, Oct. (2017). [Google Scholar]
  31. S.-W. Kim, “Prediction of Shear Strength of Reinforced High-Strength Concrete Beams Using Compatibility-Aided Truss Model,” Applied Sciences, vol. 11, no. 22, p. 10585, Nov. (2021), https://doi.org/10.3390/app112210585 [CrossRef] [Google Scholar]
  32. H. Hamkah, “IMPROVING FLEXURAL MOMENT CAPACITY OF CONCRETE BEAM BY CHANGING THE REINFORCEMENT CONFIGURATION,” International Journal of GEOMATE, vol. 20, no. 79, pp. 161–167, Mar. (2021), doi: 10.21660/2021.79.j2042. [CrossRef] [Google Scholar]
  33. V. Jagota, A. P. S. Sethi, and K. Kumar, “Finite Element Method: An Overview,” WALAILAK JOURNAL, vol. 10, no. 1, pp. 1–8, Jan. (2013), doi: 10.2004/wjst.v10i1.499. [Google Scholar]
  34. S. H. Yang, K. S. Woo, J. J. Kim, and J. S. Ahn, “Finite Element Analysis of RC Beams by the Discrete Model and CBIS Model Using LS-DYNA,” Advances in Civil Engineering, vol. 2021, Feb. (2021), https://doi.org/10.1155/2021/8857491 [Google Scholar]
  35. F. Z. Bhat, “Application of Finite Element Analysis,” in Application of Finite Element Analysis, Jun. 2021. Accessed: Aug. 07, 2022. [Online]. Available: https://www.researchgate.net/publication/352017598_Application_of_Finite_Element_Analysis [Google Scholar]
  36. M. Arafa, M. A. Alqedra, and R. Salim, “Performance of RC beams with embedded steel trusses using nonlinear FEM analysis,” Advances in Civil Engineering, vol. 2018, (2018), https://doi.org/10.1155/2018/9079818 [CrossRef] [Google Scholar]
  37. S. S. Chiriki and G. Sri Harsha, “Finite element analysis of RC deep beams strengthened with I-section and truss reinforcement,” Mater Today Proc, vol. 33, pp. 156–161, Jan. (2020), doi: 10.1016/J.MATPR.2020.03.579. [CrossRef] [Google Scholar]
  38. D. Dinesh and A. P, “Numerical Study of Hybrid Steel Trussed Concrete Beam,” International Research Journal of Engineering and Technology (IRJET), vol. 4, no. 5, May (2017). [Google Scholar]
  39. A. Demir, G. Dok, and H. Öztürk, “3D Numerical Modeling of RC Deep Beam Behavior by Nonlinear Finite Element Analysis,” DISASTER SCIENCE AND ENGINEERING, vol. 2, no. 1, pp. 13–18, Apr. (2016). [Google Scholar]
  40. G. Campione, P. Colajanni, and A. Monaco, “Analytical evaluation of steel– concrete composite trussed beam shear capacity,” Materials and Structures/Materiaux et Constructions, vol. 49, no. 8, pp. 3159–3176, Aug. (2016), https://doi.org/10.1617/s11527-015-0711-6 [Google Scholar]
  41. Z. You, X. Chen, and S. Dong, “Ductility and strength of hybrid fiber reinforced self-consolidating concrete beam with low reinforcement ratios,” Systems Engineering Procedia, vol. 1, pp. 28–34, (2011), doi: 10.1016/j.sepro.2011.08.006. [CrossRef] [Google Scholar]
  42. R. Salih, F. Zhou, N. Abbas, and A. Khan Mastoi, “Experimental Investigation of Reinforced Concrete Beam with Openings Strengthened Using FRP Sheets under Cyclic Load,” Materials, vol. 13, no. 14, p. 3127, Jul. (2020), doi: 10.3390/ma13143127. [CrossRef] [Google Scholar]
  43. E. Natarajan, “DUCTILITY RESPONSE OF HYBRID FIBRE REINFORCED CONCRETE BEAMS,” Journal of Urban and Environmental Engineering, pp. 174–179, Jun. (2018), https://doi.org/10.4090/juee.2017.v11n2.174-179 [CrossRef] [Google Scholar]
  44. V. Joshy and K. M. Faisal, “Experimental Study on the Behaviour of Spirally Reinforced SCC beams,” International Journal of Engineering Research and General Science, vol. 5, no. 3, pp. 96–105, (2017). [Google Scholar]
  45. “jamovi open statistical software for the desktop and cloud.” Accessed: Mar. 01, 2024. [Online]. Available: https://www.jamovi.org/ [Google Scholar]
  46. “The Comprehensive R Archive Network.” Accessed: Mar. 18, 2024. [Online]. Available: https://cran.r-project.org/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.