Open Access
Issue |
MATEC Web Conf.
Volume 396, 2024
8th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium (WMCAUS 2023)
|
|
---|---|---|
Article Number | 19002 | |
Number of page(s) | 11 | |
Section | GIS-Based Modelling for Mitigation Planning | |
DOI | https://doi.org/10.1051/matecconf/202439619002 | |
Published online | 24 May 2024 |
- K. Bhuyan et al., “Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data,” Sci. Rep., vol. 13, no. 1, pp. 1–27, 2023, DOI: 10.1038/s41598-022-27352-y. [CrossRef] [Google Scholar]
- W. Lu, Y. Hu, Z. Zhang, and W. Cao, “A dual - encoder U - Net for landslide detection using Sentinel - 2 and DEM data,” Landslides, no. May, 2023, DOI: 10.1007/s10346- 023-02089-5. [Google Scholar]
- L. Bragagnolo, L. R. Rezende, R. V. da Silva, and J. M. V. Grzybowski, “Convolutional neural networks applied to semantic segmentation of landslide scars,” Catena, vol. 201, no. January, p. 105189, 2021, DOI: 10.1016/j.catena.2021.105189. [CrossRef] [Google Scholar]
- SGC, Colombian Geological Service. Methodological guide for the zoning of mass movement hazard - Scale 1: 25.000. Bogotá-Colombia, 2017. [Google Scholar]
- M. I. Sameen and B. Pradhan, “Landslide Detection Using Residual Networks and the Fusion of Spectral and Topographic Information,” IEEE Access, vol. 7, pp. 114363–114373, 2019, DOI: 10.1109/ACCESS.2019.2935761. [CrossRef] [Google Scholar]
- S. R. Meena et al., “Landslide detection in the Himalayas using machine learning algorithms and U-Net,” Landslides. 2022, DOI: 10.1007/s10346-022-01861-3. [Google Scholar]
- N. Prakash, A. Manconi, and S. Loew, “Mapping landslides from EO data using deeplearning methods,” in EGU General Assembly 2020, 2020, pp. EGU2020-11876, [Online]. Available: https://doi.org/10.5194/egusphere-egu2020-11876, 2020. [Google Scholar]
- O. Ghorbanzadeh, H. Shahabi, A. Crivellari, S. Homayouni, T. Blaschke, and P. Ghamisi, “Landslide detection using deep learning and object-based image analysis,” Landslides, vol. 19, no. 4, pp. 929–939, 2022, DOI: 10.1007/s10346-021-01843-x. [CrossRef] [Google Scholar]
- O. Ghorbanzadeh, K. Gholamnia, and P. Ghamisi, “The application of ResU-net and OBIA for landslide detection from multi-temporal sentinel-2 images,” Big Earth Data, vol. 00, no. 00, pp. 1–26, 2022, DOI: 10.1080/20964471.2022.2031544. [Google Scholar]
- L. Nava, O. Monserrat, and F. Catani, “Improving Landslide Detection on SAR Data Through Deep Learning,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, DOI: 10.1109/LGRS.2021.3127073. [Google Scholar]
- O. Ghorbanzadeh, T. Blaschke, K. Gholamnia, S. R. Meena, D. Tiede, and J. Aryal, “Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection,” Remote Sens., vol. 11, no. 2, 2019, DOI: 10.3390/rs11020196. [Google Scholar]
- F. Catani, “Landslide detection by deep learning of non-nadiral and crowdsourced optical images,” Landslides, vol. 18, no. 3, pp. 1025–1044, 2021, DOI: 10.1007/s10346-020-01513-4. [CrossRef] [Google Scholar]
- S. R. Meena, L. Nava, K. Bhuyan, and S. Puliero, “HR-GLDD : A globally distributed dataset using generalized DL for rapid landslide mapping on HR satellite imagery,” no. October, 2022, DOI: 10.5194/essd-2022-350. [Google Scholar]
- N. Prakash, A. Manconi, and S. Loew, “Mapping landslides on EO data: Performance of deep learning models vs. Traditional machine learning models,” Remote Sens., vol. 12, no. 3, 2020, DOI: 10.3390/rs12030346. [Google Scholar]
- N. Prakash, A. Manconi, and S. Loew, “A new strategy to map landslides with a generalized convolutional neural network,” Sci. Rep., vol. 11, no. 1, pp. 1–15, 2021, DOI: 10.1038/s41598-021-89015-8. [NASA ADS] [CrossRef] [Google Scholar]
- L. P. Soares, H. C. Dias, G. P. B. Garcia, and C. H. Grohmann, “Landslide Segmentation with Deep Learning: Evaluating Model Generalization in Rainfall- Induced Landslides in Brazil,” Remote Sens., vol. 14, no. 9, 2022, DOI: 10.3390/rs14092237. [Google Scholar]
- L. Nava, K. Bhuyan, S. R. Meena, O. Monserrat, and F. Catani, “Rapid Mapping of Landslides on SAR Data by Attention U-Net,” Remote Sens., vol. 14, no. 6, pp. 1–15, 2022, DOI: 10.3390/rs14061449. [Google Scholar]
- C. A. Hidalgo and J. A. Vega, “Probabilistic landslide risk assessment in water supply basins: La Liboriana River Basin (Salgar-Colombia),” Nat. Hazards, vol. 109, no. 1, pp. 273–301, 2021, DOI: 10.1007/s11069-021-04836-0. [CrossRef] [Google Scholar]
- https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar, online 04/2024 [Google Scholar]
- https://asf.alaska.edu/data-sets/sar-data-sets/sentinel-1, online 04/2024 [Google Scholar]
- L. P. Soares, H. C. Dias, G. P. B. Garcia, and C. H. Grohmann, “Landslide Segmentation with Deep Learning: Evaluating Model Generalization in Rainfall- Induced Landslides in Brazil,” Remote Sens., vol. 14, no. 9, 2022, DOI: 10.3390/rs14092237. [Google Scholar]
- O. Ghorbanzadeh, A. Crivellari, P. Ghamisi, H. Shahabi, and T. Blaschke, “A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan),” Sci. Rep., vol. 11, no. 1, pp. 1–20, 2021, DOI: 10.1038/s41598-021-94190-9. [NASA ADS] [CrossRef] [Google Scholar]
- L. P. Soares, H. C. Dias, and C. H. Grohmann, “Landslide Segmentation with U-Net: Evaluating Different Sampling Methods and Patch Sizes,” no. July, 2020, [Online]. Available: http://arxiv.org/abs/2007.06672. [Google Scholar]
- N. Chandra, S. Sawant, and H. Vaidya, “An Efficient U-Net Model for Improved Landslide Detection from Satellite Images,” PFG - J. Photogramm. Remote Sens. Geoinf. Sci., vol. 91, no. 1, pp. 13–28, 2023, DOI: 10.1007/s41064-023-00232-4. [Google Scholar]
- L. Bai et al., “Multispectral U-Net: A Semantic Segmentation Model Using Multispectral Bands Fusion Mechanism for Landslide Detection,” CEUR Workshop Proc., vol. 3207, pp. 101–104, 2022. [Google Scholar]
- K. Bhuyan, S. R. Meena, L. Nava, and C. J. Van Westen, “Mapping landslides through a temporal lens: An insight towards multi- temporal landslide mapping using the U-Net deep learning model,” no. June, 2022, DOI: 10.31223/X5DM0B. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.