Open Access
Issue
MATEC Web Conf.
Volume 396, 2024
8th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium (WMCAUS 2023)
Article Number 05016
Number of page(s) 13
Section Structural Engineering
DOI https://doi.org/10.1051/matecconf/202439605016
Published online 24 May 2024
  1. F. Mama, Réseau routier et autoroutier Algérien: consistances et perspectives, (In French), in the Proc. of Conference on Road Safety, 18 September 2017, Algiers, Algeria, (2017) [Google Scholar]
  2. AASHTO, Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, (American Association of State and Highway Transportation Officials, USA, 2008), ISBN: 1-56051-423-7. [Google Scholar]
  3. CTTP, Catalogue de Dimensionnement des Chaussées, (In French), (Direction des Routes, Ministère des Travaux Publics, Algiers, Algeria, 2001) [Google Scholar]
  4. T. Nguyen, H.B. Ly, B.T. Pham, Backpropagation neural network-based machine learning model for prediction of soil friction angle. Mathematical Problems in Engineering 2020, 8845768 (2020). https://doi.org/10.1155/2020/8845768 [Google Scholar]
  5. C. Pati, M. Tsakoumaki, A critical comparison of correlations for rapid estimation of subgrade stiffness in pavement design and construction. Constr. Mater. 3(1), 127–142 (2023). https://doi.org/10.3390/constrmater3010009 [Google Scholar]
  6. A.M. Rahim, Subgrade soil index properties to estimate resilient modulus for pavement design. Int. J. Pavement Eng. 6(3), 163–169 (2005). https://doi.org/10.1080/10298430500140891 [CrossRef] [Google Scholar]
  7. H.H. Titi, M.G. Matar, Estimating resilient modulus of base aggregates for mechanistic-empirical pavement design and performance evaluation. Transportation Geotechnics 17(A), 141–153 (2018). https://doi.org/10.1016/j.trgeo.2018.09.014 [CrossRef] [Google Scholar]
  8. M.Y. Abu-Farsakh, A. Mehrotra, L. Mohammad, K. Gaspard, Incorporating the Effect of Moisture Variation on Resilient Modulus for Unsaturated Fine- Grained Subgrade Soils. Transportation Research Record 2510(1), 44–53 (2015). https://doi.org/10.3141/2510-06 [CrossRef] [Google Scholar]
  9. G. Rada, M. Witczak, Comprehensive evaluation of laboratory resilient moduli results for granular material. Transportation Research Record 810(1), 23–33 (1981). [Google Scholar]
  10. F. Lekarp, U. Isacsson, A. Dawson, State of the art. I: Resilient response of unbound aggregates. J. Transp. Eng. 126(1), 66–75 (2000). [CrossRef] [Google Scholar]
  11. S. Saha, F. Gu, X. Luo, R.L. Lytton, Use of an Artificial Neural Network Approach for the Prediction of Resilient Modulus for Unbound Granular Material. Transportation Research Record 2672(52), 23–33 (2018). https://doi.org/10.1177/0361198118756881 [CrossRef] [Google Scholar]
  12. L.N. Mohammad, B. Huang, A.J. Puppala, A. Allen, Regression Model for Resilient Modulus of Subgrade Soils. Transportation Research Record 1687(1), 47–54 (1999). https://doi.org/10.3141/1687-06 [CrossRef] [Google Scholar]
  13. A. Alnedawi, R. Al-Ameri, K.P. Nepal, Neural network-based model for permanent deformation of unbound granular materials. J. Rock Mech. Geotech. Eng. 11(6), 1231–1242 (2019). https://doi.org/10.1016/j.jrmge.2019.03.005 [CrossRef] [Google Scholar]
  14. A.R. Ghanizadeh, R. Morteza, Application of artifitial neural network to predict the resilient modulus of stabilized base subjected to wet-dry cycles. Comput. Mater. Civ. Eng. 1(1), 37–47 (2016). [Google Scholar]
  15. M.R. Kaloop, A.R. Gabr, S.M. El-Badawy, A. Arisha, S. Shwally, J.W. Hu, Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques. Front. Struct. Civ. Eng. 13(6), 1379–1392 (2019). https://doi.org/10.1007/s11709-019-0562-2 [CrossRef] [Google Scholar]
  16. K. Sandjak, M. Ouanani, T. Messafer, Bayesian Regularized Backpropagation Neural Network Model to Estimate Resilient Modulus of Unbound Granular Materials for Pavement Design, in Advanced Computational Techniques for Renewable Energy Systems, edited by M. Hatti (Springer, 2023), pp. 457–468. [CrossRef] [Google Scholar]
  17. F. Gu, H. Sahin, X. Luo, R. Luo, R.L. Lytton, Estimation of Resilient Modulus of Unbound Aggregates Using Performance-Related Base Course Properties. J. Mater. Civ. Eng. 27(6), 04014188 (2015). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001147 [CrossRef] [Google Scholar]
  18. K. Sandjak, M. Ouanani, Experimental characterisation and numerical modelling of the resilient behaviour of unbound granular materials for roads. J. Build. Mat. Struct. 7(2), 159–177 (2020). https://doi.org/10.34118/jbms.v7i2.708 [CrossRef] [Google Scholar]
  19. Y. H. Huang, Pavement Analysis and Design (Pearson India, Delhi, 2003), pp. 270. [Google Scholar]
  20. A.T. Papagiannakis, E.A. Masad, Pavement Design and Materials (John Wiley & Sons, New Jersey, 2008), pp. 270, ISBN-13: 978-0-471-21461-8 [Google Scholar]
  21. V.N. Vapnik, The Nature of Statistical Learning Theory (Springer New York, 1995), http://dx.doi.org/10.1007/978-1-4757-2440-0 [CrossRef] [Google Scholar]
  22. H. Su, X. Li, B. Yang, Z. Wen, Wavelet support vector machine-based prediction model of dam deformation”, Mech.Syst. Signal Process. 110, 412–427 (2018). http://dx.doi.org/10.1016/j.ymssp.2018.03.022 [CrossRef] [Google Scholar]
  23. B. Shahriari, K. Swersky, Z. Wang, R.P. Adams, N. De Freitas, Taking the human out of the loop: A review of Bayesian optimization, in IEEE Conference Proceeding 104 (2016), pp. 148–175, http://dx.doi.org/10.1109/JPROC.2015.2494218 [CrossRef] [Google Scholar]
  24. D.T. Chang, Bayesian hyperparameter optimization with BoTorch, GPyTorch and Ax. Computer Science-Machine learning, (2019). https://doi.org/10.48550/arXiv.1912.05686 [Google Scholar]
  25. J. Mockus, Bayesian Approach to Global Optimization (Springer, Dordrecht, 2012), pp. 270, http://dx.doi.org/10.1007/978-94-009-0909-0. [Google Scholar]
  26. J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, in: Adv. Neural Inf. Process. Syst., 2012, pp. 2951–2959. [Google Scholar]
  27. M. Feurer and F. Hutter, “Hyperparameter Optimization” in Automated Machine Learning, edited by F. Hutter (Springer, 2019), pp. 3–33, http://dx.doi.org/10.1007/978-3-030-05318-51. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.