Open Access
Issue |
MATEC Web Conf.
Volume 396, 2024
8th World Multidisciplinary Civil Engineering - Architecture - Urban Planning Symposium (WMCAUS 2023)
|
|
---|---|---|
Article Number | 05008 | |
Number of page(s) | 13 | |
Section | Structural Engineering | |
DOI | https://doi.org/10.1051/matecconf/202439605008 | |
Published online | 24 May 2024 |
- F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp. 345–405, 1991, DOI:10.1145/116873.116880. [CrossRef] [Google Scholar]
- J. Max, “Quantizing for Minimum Distortion,” IRE Trans. Inf. Theory, vol. 6, no. 1, pp. 7–12, 1960, DOI:10.1109/TIT.1960.1057548. [CrossRef] [Google Scholar]
- Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoi Tessellations: Applications and Algorithms,” SIAM Rev., vol. 41, no. 4, pp. 637–676, 1999, DOI:10.1137/S0036144599352836. [CrossRef] [Google Scholar]
- C. Talischi, G. H. Paulino, A. Pereira, I. F. M. Menezes, A. Pereira, and I. F. M. Menezes, “PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab,” vol. 45, pp. 309–328, 2012, DOI:10.1007/s00158-011-0706-z. [Google Scholar]
- Q. Du, M. Emelianenko, and L. Ju, “Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations,” SIAM J. Numer. Anal., vol. 44, no. 1, pp. 102–119, 2006, DOI:10.1137/040617364. [CrossRef] [Google Scholar]
- G. B. Arfken, Mathematical Methods for Physicists. Academic Press, 2013. [Google Scholar]
- L. McMillan, Jr., “An image-based approach to three-dimensional computer graphics,” The University of North Carolina at Chapel Hill, 1997. [Google Scholar]
- R. T. Haftka and Z. Gürdal, Elements of Structural Optimization. Springer Netherlands, 1992. [Google Scholar]
- A. K. Peter W. Christensen, An Introduction to Structural Optimization. Springer Netherlands, 2008. [Google Scholar]
- R. T. Haftka and R. V. Grandhi, “Structural shape optimization — a survey,” Appl. Mech. Eng., vol. 57, pp. 91–106, 1986. [CrossRef] [Google Scholar]
- M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. [Google Scholar]
- D. M. Frangopol, “Structural Optimization Using Reliability Concepts,” J. Struct. Eng., vol. 111, no. 11, pp. 2288–2301, Nov. 1985, DOI:10.1061/(ASCE)0733-9445(1985)111:11(2288). [CrossRef] [Google Scholar]
- J. Chun, “Reliability-Based Design Optimization of Structures Using Complex-Step Approximation with Sensitivity Analysis,” Appl. Sci., vol. 11, no. 10, p. 4708, May 2021, DOI:10.3390/app11104708. [CrossRef] [Google Scholar]
- J. Chun, “Reliability-Based Design Optimization of Structures Using the Second-Order Reliability Method and Complex-Step Derivative Approximation,” Appl. Sci., vol. 11, no. 11, p. 5312, Jun. 2021, DOI:10.3390/app11115312. [CrossRef] [Google Scholar]
- J. Chun, J. Song, and G. H. Paulino, “Structural topology optimization under constraints on instantaneous failure probability,” Struct. Multidiscip. Optim., vol. 53, no. 4, 2016, DOI:10.1007/s00158-015-1296-y. [Google Scholar]
- J. Chun, J. Song, and G. H. G. H. Paulino, “System-reliability-based design and topology optimization of structures under constraints on first-passage probability,” Struct. Saf., vol. 76, pp. 81–94, Jan. 2019, DOI:10.1016/j.strusafe.2018.06.006. [CrossRef] [Google Scholar]
- J. Chun, G. H. Paulino, and J. Song, “Reliability-based topology optimization by ground structure method employing a discrete filtering technique,” Struct. Multidiscip. Optim., vol. 60, no. 3, pp. 1035–1058, Sep. 2019, DOI:10.1007/s00158-019-02255-1. [CrossRef] [Google Scholar]
- P. T. Boggs and J. W. Tolle, “Sequential Quadratic Programming,” Acta Numer., vol. 4, pp. 1–51, 1995, DOI:10.1017/S0962492900002518. [CrossRef] [Google Scholar]
- C. Fleury and V. Braibant, “Structural optimization: A new dual method using mixed variables,” Int. J. Numer. Methods Eng., vol. 23, no. 3, pp. 409–428, Mar. 1986, DOI:10.1002/nme.1620230307. [CrossRef] [Google Scholar]
- C. Fleury, “Structural weight optimization by dual methods of convex programming,” Int. J. Numer. Methods Eng., vol. 14, no. 12, pp. 1761–1783, Jan. 1979, DOI:10.1002/nme.1620141203. [CrossRef] [Google Scholar]
- K. Svanberg, “The method of moving asymptotes: a new method for structural optimization,” Int. J. Numer. Methods Eng., vol. 24, no. 2, pp. 359–373, Feb. 1987, DOI:10.1002/nme.1620240207. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.