Open Access
Issue
MATEC Web Conf.
Volume 395, 2024
2023 2nd International Conference on Physics, Computing and Mathematical (ICPCM2023)
Article Number 01010
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439501010
Published online 15 May 2024
  1. Jing M., Wei G., Prasenjit M., Sejeong K., Bernard J. J., Kam-Fai W., Meeyoung C., et al. Detecting Rumors from microblogs with recurrent neural networks. International Joint Conference on Artificial Intelligence, 2016: 3818–3824. [Google Scholar]
  2. Feng Y., Qiang L., Shu W., Liang W., Tieniu T., et al. A convolutional approach for misinformation identification. International Joint Conference on Artificial Intelligence, 2017: 3901–3907. [Google Scholar]
  3. Liu Y., Wu Y. F. Early detection of fake news on social media through propagation path classification with recurrent and convolutional networks. Proceedings of The Thirty- Second AAAI Conference on Artificial Intelligence, 2018, 32(1):354–361. [Google Scholar]
  4. Shu K., Cui L., Wang S., et al. dEFEND: Explainable fake news detection. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 395-405. [Google Scholar]
  5. Ma J., Gao W., Mitra P., et al. Detecting rumors from microblogs with recurrent neural networks. Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2016: 3818–3824. [Google Scholar]
  6. Tian B., Xi X., Tingyang X., Peilin Z., Wenbing H., Yu R., Junzhou H., et al. Rumor detection on social media with Bi-directional graph convolutional networks. AAAI Conference on Artificial Intelligence, 2020, 34(): 549-556. [Google Scholar]
  7. Lu Y.-J., Li C.-T. GCAN: Graph-aware Co-attention networks for explainable fake news detection on social media[C]. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 505–514. [Google Scholar]
  8. Dong M., Zheng B., Quoc Viet Hung N., Su, H., Li, G. (2019) Multiple rumor source detection with graph convolutional networks. In:Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 569-578 [Google Scholar]
  9. Tao W., Rui W., Di J., Dongxiao H., Yuxiao H., et al. Powerful graph convolutioal networks with adaptive propagation mechanism for homophily and heterophily, AAAI 2022, 2022. [Google Scholar]
  10. Hao T., Donghong J., Chenliang L., Qiji Z., et al. Dependency graph enhanced dualtransformer structure for aspect-based sentiment classification, Annual Meeting of the Association for Computational Linguistics, 2020, 2020.acl-main: 6578-6588. [Google Scholar]
  11. Thomas N. Kipf, Max Welling. Semi-supervised classification with graph convolutional networks. International Conference on Learning Representations, 2017, abs/1609.02907() [Google Scholar]
  12. Ma J., Gao W., Wong K. F. Detect rumors in microblog posts using propagation structure via kernel learning. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 708–717. [Google Scholar]
  13. Ma J., Gao W., Wei Z., et al. Detect rumors using time series of social context information on microblogging websites. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, 2015: 1751–1754. [Google Scholar]
  14. Kanagavalli N., Baghavathipriya S., Ilavarasan S. Identification of deception detection on social media (twitter) data sets using naive base classification and RVNN model. Proceedings of the First International Conference on Computing, Communication and Control System, Bharath University, Chennai, India, 2021: 7-8. [Google Scholar]
  15. Tang Q., An Y., Raman V., et al. Experimental study on the effects of spray-wall interaction on partially premixed combustion (PPC) and engine emissions. Energy & Fuels, 2019, 33(6):5673–5681. [Google Scholar]
  16. Serena K., Hai L. C., Zhong Q., Jing J., et al. Interpretable rumor detection in microblogs by attending to user interactions, AAAI Conference on Artificial Intelligence, 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.