Open Access
MATEC Web Conf.
Volume 395, 2024
2023 2nd International Conference on Physics, Computing and Mathematical (ICPCM2023)
Article Number 01003
Number of page(s) 6
Published online 15 May 2024
  1. Gao, Y., Wu, Y., Wu, Z., &Jiang, S. (2019). A numerical study on ice load estimation of marine structures. Ocean Engineering, 192, 106619. [Google Scholar]
  2. Bai, Y., &Bai, X. (2018). Numerical simulation of ice-structure interaction: A review. Cold Regions Science and Technology, 149, 1-16. [Google Scholar]
  3. Wang, X., Yan, Y., & Wu, Y. (2018). Numerical study of ice loads on offshore structures: Comparison of CFD and BEM methods. Ocean Engineering, 148, 45–56. [Google Scholar]
  4. Wu, Y., Yan, Y., Liu, X., &Wang, X. (2017). Discrete element modelling of icestructure interaction: A review. Cold Regions Science and Technology, 143, 52-65. [Google Scholar]
  5. Sharapov D., Shkhinek K., DelValls T. Á. Ice collars, development and effects // Ocean Engineering. - 2016.- T. 115. - C. 189-195. [Google Scholar]
  6. Zhang, Z., & Zhao, Y. (2019). Numerical modelling of ice-structure interaction using smoothed particle hydrodynamics (SPH) method. Cold Regions Science and Technology, 164, 78–90. [Google Scholar]
  7. Wang, C., Huang, H., & Chen, Y. (2017). A numerical investigation on ice-induced loads on semi-submersible platforms in Bohai Sea. Ocean Engineering, 135, 100–111. [Google Scholar]
  8. Anandakrishnan, S., & Alley, R. B. (1997). Stresses in ice sheets. Reviews of geophysics, 35(1), 91–121. [Google Scholar]
  9. Sharapov D., Sumtsova A.S. Strength of stone coast protection in ice // Power technology and engineering. - 2023. [Google Scholar]
  10. Sharapov D., Sumtsova A.S. Ustoychivost’ kamennoy nabroski k podvizhkam l’da metodom ke // Gidrotekhnicheskoye stroitel’stvo (Hydraulic engineering), 2 (2023), 2-7. - 2023. ISSN: 0016-9714 [Google Scholar]
  11. Duval, P. (1977). The creep of ice: A review. Journal of Glaciology, 18(80), 373–396. [Google Scholar]
  12. Gow, A. J., & Meese, D. A. (2007). The physical and mechanical properties of ice. In Encyclopaedia of Snow, Ice and Glaciers (pp. 753-760). Springer, Dordrecht. [Google Scholar]
  13. Humphrey, N., & Oksanen, J. (2018). An introduction to elastic modelling of ice sheets. In Springer Polar Sciences (pp. 1-15). Springer, Cham. [Google Scholar]
  14. Alley, R. B., Dupont, T. K., & Parizek, B. R. (2005). Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights. Annals of Glaciology, 40, 8-14. [Google Scholar]
  15. Hooke, R. L. (2005). Principles of glacier mechanics (2nd ed.). Cambridge University Press. [Google Scholar]
  16. Bassis, J. N., & Walker, C. C. (2011). Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2133), 269–288. [Google Scholar]
  17. Greve, R. (2009). Dynamics of ice sheets and glaciers (Vol. 11). Springer Science & Busi-ness Media. [Google Scholar]
  18. Lliboutry, L. (1968). General theory of subglacial cavitation and sliding of temperate glaciers. Journal of Glaciology, 7(49), 21–58. [Google Scholar]
  19. Paterson, W. S. B. (1994). The physics of glaciers. Elsevier. [Google Scholar]
  20. Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.