Open Access
Issue
MATEC Web Conf.
Volume 394, 2024
1st International Conference on Civil and Earthquake Engineering (ICCEE2023)
Article Number 03004
Number of page(s) 6
Section Structures and Risks
DOI https://doi.org/10.1051/matecconf/202439403004
Published online 26 April 2024
  1. Giunta, G., Crisafulli, D., Belouettar, S., & Carrera, E.: A thermo-mechanical analysis of functionally graded beams via hierarchical modelling. Composite Structures, 95, 676–690. (2013). [CrossRef] [Google Scholar]
  2. G. Giunta, S. Belouettar, E. Carrera.: Analysis of FGM Beams by Means of Classical and Advanced Theories. Mech. Adv. Mater. Struct. 17(8) (2010) 622–635. [CrossRef] [Google Scholar]
  3. Timoshenko, S. P.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil Mag Ser, 41, 744–764 (1921). [CrossRef] [Google Scholar]
  4. Aydogdu, M., & Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Materials & design, 28(5), 1651–1656 (2007). [CrossRef] [Google Scholar]
  5. Giunta, G., Belouettar, S., & Carrera, E.: Analysis of FGM beams by means of classical and advanced theories. Mechanics of Advanced Materials and Structures, 17(8), 622–635 (2010). [CrossRef] [Google Scholar]
  6. Nguyen, T. K., Vo, T. P., & Thai, H. T.: Static and free vibration of axially loaded functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 55, 147–157 (2013). [CrossRef] [Google Scholar]
  7. Hadji, L., Khelifa, Z., & El Abbes, A. B.: A new higher order shear deformation model for functionally graded beams. KSCE Journal of Civil Engineering, 20, 1835–1841 (2016). [CrossRef] [Google Scholar]
  8. Hadji, L., Daouadji, T. H., Meziane, M., Tlidji, Y., & Bedia, E. A.: Analysis of functionally graded beam using a new first-order shear deformation theory. Structural engineering and mechanics: An international journal, 57(2), 315–325 (2016). [CrossRef] [Google Scholar]
  9. Librescu, L., Oh, S. Y., & Song, O.: Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. Journal of Thermal Stresses, 28(6-7), 649–712 (2005). [CrossRef] [Google Scholar]
  10. Ait Atmane, H., Tounsi, A., & Bernard, F.: Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. International Journal of Mechanics and Materials in Design, 13, 71–84 (2017). [CrossRef] [Google Scholar]
  11. Kiani, Y. A. S. S. E. R., & Eslami, M. R.: Thermomechanical buckling oftemperature-dependent FGM beams. Latin American Journal of Solids and Structures, 10, 223–246 (2013). [CrossRef] [Google Scholar]
  12. Kiani, Y., & Eslami, M. R.: Thermal buckling analysis of functionally graded material beams. International Journal of Mechanics and Materials in Design, 6, 229–238 (2010). [CrossRef] [Google Scholar]
  13. Ke, L. L., Yang, J., & Kitipornchai, S.: An analytical study on the nonlinear vibration of functionally graded beams. Meccanica, 45, 743–752 (2010). [CrossRef] [Google Scholar]
  14. Mu, L., & Zhao, G.: Fundamental frequency analysis of sandwich beams with functionally graded face and metallic foam core. Shock and Vibration, 2016. [Google Scholar]
  15. Nirmala K, Upadhyay PC, Prucz J, Lyons D.: Thermo-elastic Stresses in Composite Beams with Functionally Graded Layer. Journal of Reinforced Plastics and Composites. 25(12):1241–1254 (2006). [CrossRef] [Google Scholar]
  16. Zenkour, A.M., Allam, M.N.M. & Sobhy, M.: Bending analysis of FG viscoelastic sandwich beams with elastic cores resting on Pasternak’s elastic foundations. Acta Mech 212, 233–252 (2010). [CrossRef] [Google Scholar]
  17. Wattanasakulpong, N., Prusty, B. G., & Kelly, D. W.: Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams. International Journal of Mechanical Sciences, 53(9), 734–743 (2011). [CrossRef] [Google Scholar]
  18. Navazi, H. M., & Haddadpour, H.: Aero-thermoelastic stability of functionally graded plates. Composite Structures, 80(4), 580–587 (2007). [CrossRef] [Google Scholar]
  19. Reddy, J.: Analysis of functionally graded plates. International Journal for numerical methods in engineering, 47(1–3), 663–684 (2000). [CrossRef] [Google Scholar]
  20. Ferreira, A. J. M., Batra, R. C., Roque, C. M. C., Qian, L. F., & Martins, P. A. L. S.: Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite structures, 69(4), 449–457 (2005). [CrossRef] [Google Scholar]
  21. Tounsi, A., Houari, M. S. A., & Benyoucef, S.: A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerospace science and technology, 24(1), 209–220 (2013). [CrossRef] [Google Scholar]
  22. Soldatos, K.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mechanica, 94(3-4), 195–220 (1992). [CrossRef] [Google Scholar]
  23. Reddy, J. N.: A simple higher-order theory for laminated composite plates. J. Appl Mech. 51, pp 745–752 (1984). [CrossRef] [Google Scholar]
  24. Reddy, J. N.: Energy principles and variational methods in applied mechanics. John Wiley & Sons (2017). [Google Scholar]
  25. Chikh, A.: Analysis of static behavior of a P-FGM Beam. Journal of Materials and Engineering Structures «JMES», 6(4), 513–524 (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.