Open Access
Issue
MATEC Web Conf.
Volume 394, 2024
1st International Conference on Civil and Earthquake Engineering (ICCEE2023)
Article Number 01002
Number of page(s) 7
Section Geotechnics
DOI https://doi.org/10.1051/matecconf/202439401002
Published online 26 April 2024
  1. A. Medjnoun, and R. Bahar, Shrinking-swelling of clay under the effect of hydric cycles. Innov. Infrastruct. Solut. 1, (2016) https://doi.org/10.1007/s41062-016-0043-6. [CrossRef] [Google Scholar]
  2. H.B. Seed, R.J. Woodward, R. Lundgren, Prediction of swelling potential for compacted clays. J. of soil Mech. & Found., ASCE, 88, 53, (1962) [CrossRef] [Google Scholar]
  3. D.E. Jones, W.G. Holtz, Expansive Soils – the Hidden Disaster. Civil. Eng. 43, 49 (1973) [Google Scholar]
  4. A. Medjnoun, and R. Bahar, Analytical and statistical study of the parameters of expansive soil. Inter J. Geol, Environ, Eng. 10. 10. 2. (2016) https://doi.org/10.5281/zenodo.1123570 [Google Scholar]
  5. F. H. Chen, Foundations on expansive soils. 12. 52 (Elsevier, New York, 2012) [Google Scholar]
  6. W.T. Altmeyer, Discussion of engineering properties of expansive soils, J. of the Soil Mech and Found Div, American Soci Test Mat, 81, 17. (1955) [Google Scholar]
  7. A. T. Farid & M. Mosaid, Swelling potential prediction of expansive soils using blue methylene value. In Soil Behavior and Geomechanics 25 (2014) https://doi.org/10.1061/9780784413388.003 [Google Scholar]
  8. A.B. Williams. & G.W. Donaldson, Developments related to building on expansive soils in South Africa in Proceeding of 4th Int. Conf. On Expansive soils (1980), Denver 2, 834 [Google Scholar]
  9. D. Chassagneux, L. Stieljes, P. Mouroux, F. Menilliet, G.H. Ducreux, Cartographie de l’aléa retrait-gonflement des sols (sécheresse-pluie) à l’échelle départementale. Approche méthodologique dans les Alpes de Haute-Provence,” Rapport BRGM R39218. 33. (1996) [Google Scholar]
  10. B. Chittoori & A. J. Puppala, Quantitative estimation of clay mineralogy in fine-grained soils. J. Geot and Geoenv eng, 137. 997. (2011). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000521 [CrossRef] [Google Scholar]
  11. I. Yilmaz, O. Kaynar, Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Systems with Applications, 38, 5, 2011, https://doi.org/10.1016/j.eswa.2010.11.027 [Google Scholar]
  12. Y. Yukselen, A. Kaya, Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng Geol, 102. 1–2. (2008) https://doi.org/10.1016/j.enggeo.2008.07.002. [Google Scholar]
  13. Y. Berrah, A. Boumezbeur, N. Kherici, et al., Application of dimensional analysis and regression tools to estimate swell pressure of expansive soil in Tebessa (Algeria). Bull. Eng. Geol. Environ., 77. (2018) https://doi.org/10.1007/s10064-016-0973-4 [Google Scholar]
  14. N.S. ISık. Estimation of Swell Index of Fine Grained Soils Using Regression Equations and Artificial Neural Networks. Sci. Res. Essays, 4, 1047. (2009) [Google Scholar]
  15. A. Medjnoun, R. Bahar, & M. Khiatine, Caractérisation et estimation du gonflement des argiles algériennes, cas des argiles de Médéa. MATEC Web of Conferences. EDP Sciences. 11, 03004. (2014). https://doi.org/10.1051/matecconf/20141103004 [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Medjnoun, M. Khiatine, & R. Bahar, Mineralogical and geotechnical characterization of swelling marly clays of the Medea region of Algeria. Bull. Eng. Geol. Environ 73, 1259. (2014). https://doi.org/10.1007/s10064-014-0582-z [CrossRef] [Google Scholar]
  17. M. A Benbouras & A. I. Petrisor, Prediction of swelling index using advanced machine learning techniques for cohesive soils. App Sci, 11. 536. (2021). https://doi.org/10.3390/app11020536 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.