Open Access
Issue
MATEC Web Conf.
Volume 393, 2024
2nd International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (STAAAR-2023)
Article Number 04002
Number of page(s) 8
Section Robotics
DOI https://doi.org/10.1051/matecconf/202439304002
Published online 13 March 2024
  1. H. Mankodiya, D. Jadav, R. Gupta, S. Tanwar, W.C. Hong, R. Sharma, “OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles,” Appl. Sci. 12, 5310 (2022). [CrossRef] [Google Scholar]
  2. S.A. Khan, H. Lim, “Novel Fuzzy Logic Scheme for Push-Based Critical Data Broadcast Mitigation in VNDN,” Sensors 22, 8078 (2022). [CrossRef] [Google Scholar]
  3. A. N. Bhavana, M.M. Kodabagi, “Exploring the Current State of Road Lane Detection: A Comprehensive Survey,” Int. J. Hum.-Comput. Interact. 2, 40–46 (2023). [Google Scholar]
  4. S.A. Khan, H. Lim, “Push-Based Forwarding Scheme Using Fuzzy Logic to Mitigate the Broadcasting Storm Effect in VNDN,” in Proceedings of the Artificial Intelligence and Mobile Services-AIMS 2022: 11th International Conference, Held as Part of the Services Conference Federation, SCF, Honolulu, H.I., USA, December 10-14, (2022), pp. 3–17. Springer, Berlin/Heidelberg, Germany. [Google Scholar]
  5. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2016), pp. 779–788. [Google Scholar]
  6. S.A. Khan, H.J. Lee, H. Lim, “Enhancing Object Detection in Self-Driving Cars Using a Hybrid Approach,” Electronics 12, 2768 (2023). [CrossRef] [Google Scholar]
  7. G. Varma, A. Subramanian, A. Namboodiri, M. Chandraker, and C.V. Jawahar, “IDD: A Dataset for Exploring Problems of Autonomous Navigation in Unconstrained Environments,” in IEEE Winter Conference on Applications of Computer Vision (WACV, 2019). [Google Scholar]
  8. Y. Li, H. Wang, L.M. Dang, D. Han, H. Moon, T. Nguyen, “A Deep Learning-Based Hybrid Framework for Object Detection and Recognition in Autonomous Driving,” IEEE Access, Vol. 8, (2020). [Google Scholar]
  9. A. Benjumea, I. Teeti, F. Cuzzolin, and A. Bradley, “YOLO-Z: Improving Small Object Detection in YOLOv5 for Autonomous Vehicles,” (2021). [Google Scholar]
  10. Y. Kortli, S. Gabsi, Y. Lew Yan Voon, J. Lew, M. Jridi, M. Maher, M. Marzougui, and M. Atri, “Deep Embedded Hybrid CNN-LSTM Network for Lane Detection on NVIDIA Jetson Xavier NX,” Knowledge-Based Systems, (2022). [Google Scholar]
  11. G.N.V.V. Satya Sai Srinath Namburi, Athul Zac Joseph, S. Umamaheswaran, Ch. Lakshmi Priyanka, Malavika Nair M., and Praveen Sankaran, “NITCAD - Developing an Object Detection, Classification, and Stereo Vision Dataset for Autonomous Navigation in Indian Roads,” Procedia Computer Science, (2020). [Google Scholar]
  12. J. Solawetz and F. Francesco, “What is YOLOv8? The Ultimate Guide,” (2023). Available online: https://blog.roboflow.com/whats-new-in-yolov8/. [Google Scholar]
  13. G. Jocher and AyushExel, “YOLO by Ultralytics,” (2023). Available online: https://docs.ultralytics.com/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.