Open Access
Issue |
MATEC Web Conf.
Volume 393, 2024
2nd International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (STAAAR-2023)
|
|
---|---|---|
Article Number | 01010 | |
Number of page(s) | 16 | |
Section | Materials Science and Manufacturing Processes | |
DOI | https://doi.org/10.1051/matecconf/202439301010 | |
Published online | 13 March 2024 |
- C. Rayment and S. Sherwin, “Introduction to Fuel Cell Technology,” 2003. [Google Scholar]
- B. Cook, “Introduction to fuel.” [Google Scholar]
- A. Kazim, “Introduction of PEM fuel-cell vehicles in the transportation sector of the United Arab Emirates.” [Online]. Available: www.elsevier.com/locate/apenergy [Google Scholar]
- J. Wu et al., “A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies,” Journal of Power Sources, Vol. 184, no. 1. pp. 104–119, Sep. 15, 2008. DOI: 10.1016/j.jpowsour.2008.06.006. [CrossRef] [Google Scholar]
- A. Fathy and A. Alanazi, “An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells,” Sustainability (Switzerland), Vol. 15, no. 15, Aug. 2023, DOI: 10.3390/su151511741. [Google Scholar]
- S. M. Haile, “Fuel cell materials and components,” Acta Mater, vol. 51, no. 19, pp. 5981–6000, Nov. 2003, DOI: 10.1016/j.actamat.2003.08.004. [CrossRef] [Google Scholar]
- S. Basu, “Proton exchange membrane fuel cell technology: India’s perspective,” Proceedings of the Indian National Science Academy, Vol. 81, no. 4. Indian National Science Academy, pp. 865–890, Sep. 01, 2015. DOI: 10.16943/ptinsa/2015/v81i4/48301. [CrossRef] [Google Scholar]
- E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, and E. De Waal, “Bipolar plates for PEM fuel cells,” in Journal of Power Sources, May 2003, pp. 44–46. DOI: 10.1016/S0378-7753(03)00070-3. [Google Scholar]
- X. Li and I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” Int J Hydrogen Energy, vol. 30, no. 4, pp. 359–371, 2005, DOI: 10.1016/j.ijhydene.2004.09.019. [CrossRef] [Google Scholar]
- Y. A. Dobrovol’skii et al., “Materials for bipolar plates for proton-conducting membrane fuel cells,” Russ J Gen Chem, vol. 77, no. 4, pp. 752–765, Apr. 2007, DOI: 10.1134/S1070363207040366. [CrossRef] [Google Scholar]
- A. E. Fetohi, R. M. Abdel Hameed, K. M. El-Khatib, and E. R. Souaya, “Study of different aluminum alloy substrates coated with Ni-Co-P as metallic bipolar plates for PEM fuel cell applications,” Int J Hydrogen Energy, vol. 37, no. 14, pp. 10807–10817, Jul. 2012, DOI: 10.1016/j.ijhydene.2012.04.066. [CrossRef] [Google Scholar]
- W. F. Miao and D. E. Laughlin, “PRECIPITATION HARDENING IN ALUMINUM ALLOY 6022,” 1999. [Google Scholar]
- D. Alexander et al., “In-situ Diagnostics of Composite Filament Material Suitable for Bi-Polar Plate Using Additive Manufacturing,” ECS Trans, vol. 104, no. 8, pp. 283–292, Oct. 2021, DOI: 10.1149/10408.0283ecst. [CrossRef] [Google Scholar]
- A. Sanjid, M. R. Anisur, and R. K. Singh Raman, “Durable degradation resistance of graphene coated nickel and Monel-400 as bi-polar plates for proton exchange membrane fuel cell,” Carbon N Y, vol. 151, pp. 68–75, Oct. 2019, DOI: 10.1016/j.carbon.2019.05.071. [CrossRef] [Google Scholar]
- T. Wilberforce et al., “A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells,” Renewable and Sustainable Energy Reviews, vol. 111, pp. 236–260, Sep. 2019, DOI: 10.1016/j.rser.2019.04.081. [CrossRef] [Google Scholar]
- S. Porstmann, T. Wannemacher, and W. G. Drossel, “A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends,” Journal of Manufacturing Processes, Vol. 60. Elsevier Ltd, pp. 366–383, Dec. 01, 2020. DOI: 10.1016/j.jmapro.2020.10.041. [CrossRef] [Google Scholar]
- Y. Song et al., “Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell,” Int J Hydrogen Energy, vol. 45, no. 54, pp. 29832–29847, Nov. 2020, DOI: 10.1016/j.ijhydene.2019.07.231. [CrossRef] [Google Scholar]
- I. Bertoti, “Characterization of nitride coatings by XPS,” 2002. [Online]. Available: www.chemres.huyAKKL [Google Scholar]
- A. Liu, J. Deng, H. Cui, Y. Chen, and J. Zhao, “Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings,” Int J Refract Metals Hard Mater, vol. 31, pp. 82–88, Mar. 2012, DOI: 10.1016/j.ijrmhm.2011.09.010. [CrossRef] [Google Scholar]
- P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials, vol. 8, no. 6, pp. 3128–3154, 2015, DOI: 10.3390/ma8063128. [CrossRef] [Google Scholar]
- A. Lippitz and T. Hübert, “XPS investigations of chromium nitride thin films,” Surf Coat Technol, Vol. 200, no. 1-4 SPEC. ISS., pp. 250–253, Oct. 2005, DOI: 10.1016/j.surfcoat.2005.02.091. [CrossRef] [Google Scholar]
- R. M. R. Pinto, V. Gund, R. A. Dias, K. K. Nagaraja, and K. B. Vinayakumar, “CMOS-Integrated Aluminum Nitride MEMS: A Review,” Journal of Microelectromechanical Systems, Vol. 31, no. 4. Institute of Electrical and Electronics Engineers Inc., pp. 500–523, Aug. 01, 2022. DOI: 10.1109/JMEMS.2022.3172766. [CrossRef] [Google Scholar]
- S. Grigoriev et al., “Influence of tribological properties of Zr-ZrN-(Zr, Cr, Al)N and Zr-ZrN-(Zr, Mo, Al)N multilayer nanostructured coatings on the cutting properties of coated tools during dry turning of Inconel 718 alloy,” Wear, vol. 512-513, Jan. 2023, DOI: 10.1016/j.wear.2022.204521. [CrossRef] [Google Scholar]
- Z. Qin, Y. Zeng, Q. Hua, Q. Xu, X. Shen, and Y. Min, “Synergistic effect of hydroxylated boron nitride and silane on corrosion resistance of aluminum alloy 5052,” J Taiwan Inst Chem Eng, vol. 100, pp. 285–294, Jul. 2019, DOI: 10.1016/j.jtice.2019.04.029. [CrossRef] [Google Scholar]
- M. Okayasu, M. Hitomi, and H. Yamazaki, “Mechanical and fatigue strengths of silicon nitride ceramics in liquid aluminum alloys,” J Eur Ceram Soc, vol. 29, no. 11, pp. 2369–2378, Aug. 2009, DOI: 10.1016/j.jeurceramsoc.2009.01.013. [CrossRef] [Google Scholar]
- C. Wang, H. Huang, H. Wu, J. Hong, L. Zhang, and J. Yan, “Ultra-low wear of titanium alloy surface under lubricated conditions achieved by laser texturing and simultaneous nitriding,” Surf Coat Technol, Vol. 474, Dec. 2023, DOI: 10.1016/j.surfcoat.2023.130083. [Google Scholar]
- J. Li, Y. Huang, Y. Zhou, and F. Zhu, “Role of boron nitride nanosheet coatings on aluminum substrates during the nanoindentation from the atomic perspective,” Appl Surf Sci, Vol. 608, Jan. 2023, DOI: 10.1016/j.apsusc.2022.155126. [Google Scholar]
- S. Y. Lee and S. H. Kim, “Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die,” J Nanosci Nanotechnol, vol. 14, no. 12, pp. 8993–8998, Dec. 2014, DOI: 10.1166/jnn.2014.10058. [CrossRef] [Google Scholar]
- Y. G. Roman and A. P. M. Adriaansen, “241 248 PREPARATION AND CHARACTERIZATION 241 ALUMINIUM NITRIDE FILMS MADE BY LOW PRESSURE CHEMICAL VAPOUR DEPOSITION: PREPARATION AND PROPERTIES,” 1989. [Google Scholar]
- F. Abdi, H. Aghajani, A. Taghizadeh Tabrizi, L. Nasimi, and F. Fazli Shokouhi, “Study on the effect of the crack closing of AlCoCrFeMnNi high entropy alloy electro-spark deposited coating by plasma nitriding on the corrosion resistance,” J Alloys Compd, Vol. 966, Dec. 2023, DOI: 10.1016/j.jallcom.2023.171629. [CrossRef] [Google Scholar]
- M. Okumiya, Y. Tsunekawa, H. Sugiyama, Y. Tanaka, N. Takano, and M. Tomimoto, “Surface modification of aluminum using ion nitriding and barrel nitriding,” Surf Coat Technol, Vol. 200, no. 1-4 SPEC. ISS., pp. 35–39, Oct. 2005, DOI: 10.1016/j.surfcoat.2005.02.110. [CrossRef] [Google Scholar]
- E. Richter et al., “Nitriding of stainless steel and aluminium alloys by plasma immersion ion implantation,” 1281. [Google Scholar]
- G. Aktaş Çelik, Ş. H. Atapek, Ş. Polat, A. Obrosov, and S. Weiβ, “Nitriding Effect on the Tribological Performance of CrN-, AlTiN-, and CrN/AlTiN-Coated DIN 1.2367 Hot Work Tool Steel,” Materials, Vol. 16, no. 7, Apr. 2023, DOI: 10.3390/ma16072804. [Google Scholar]
- M. Shahien, M. Yamada, T. Yasui, and M. Fukumoto, “Cubic aluminum nitride coating through atmospheric reactive plasma nitriding,” in Journal of Thermal Spray Technology, Mar. 2010, pp. 635–641. DOI: 10.1007/s11666-010-9469-0. [CrossRef] [Google Scholar]
- J. Barranco et al., “Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells,” Int J Hydrogen Energy, vol. 35, no. 20, pp. 11489–11498, Oct. 2010, DOI: 10.1016/j.ijhydene.2010.05.050. [CrossRef] [Google Scholar]
- J. Bi et al., “Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells,” Int J Hydrogen Energy, vol. 46, no. 1, pp. 1144–1154, Jan. 2021, DOI: 10.1016/j.ijhydene.2020.09.217. [CrossRef] [Google Scholar]
- M. Xu, S. Kang, J. Lu, X. Yan, T. Chen, and Z. Wang, “Properties of a plasma-nitrided coating and a crnx coating on the stainless steel bipolar plate of PEMFC,” Coatings, Vol. 10, no. 2, Feb. 2020, DOI: 10.3390/coatings10020183. [Google Scholar]
- S. Anders et al., “Formation of metal oxides by cathodic arc deposition,” 1995. [Google Scholar]
- S. D. Ekpe and S. K. Dew, “Investigation of thermal flux to the substrate during sputter deposition of aluminum,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 20, no. 6, pp. 1877–1885, Nov. 2002, DOI: 10.1116/1.1507342. [CrossRef] [Google Scholar]
- A. Jankowski and J. Hayes, “The evaporative deposition of aluminum coatings and shapes with grain size control,” in Thin Solid Films, Jan. 2004, pp. 568–574. DOI: 10.1016/j.tsf.2003.07.018. [CrossRef] [Google Scholar]
- F. Böke, I. Giner, A. Keller, G. Grundmeier, and H. Fischer, “Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD),” ACS Appl Mater Interfaces, vol. 8, no. 28, pp. 17805–17816, Jul. 2016, DOI: 10.1021/acsami.6b04421. [CrossRef] [Google Scholar]
- B. K. Tay, Z. W. Zhao, and D. H. C. Chua, “Review of metal oxide films deposited by filtered cathodic vacuum arc technique,” Materials Science and Engineering R: Reports, Vol. 52, no. 1-3. pp. 1–48, May 30, 2006. DOI: 10.1016/j.mser.2006.04.003. [CrossRef] [Google Scholar]
- W.-H. Kim, W. J. Maeng, M.-K. Kim, and H. Kim, “Low Pressure Chemical Vapor Deposition of Aluminum-Doped Zinc Oxide for Transparent Conducting Electrodes,” J Electrochem Soc, vol. 158, no. 8, p. D495, 2011, DOI: 10.1149/1.3599055. [CrossRef] [Google Scholar]
- R. G. Gordon, D. M. Hoffman, and U. Riaz, “Atmospheric pressure chemical vapor deposition of aluminum nitride thin films at 200-250 °C 3Zr(NEt 2 ) 4 + 4NH 3-»> Zr 3 N 4 + 12HNMe 2 Al 2 (NMe 2 )6 + 2NH 3-* 2A1N + 6HNMe 2 (1) (2) Herein we report the CVD of A1N films at 200-250 °C using Al 2 (NMe 2 ),” 1991. [Online]. Available: http://journals.cambridge.org [Google Scholar]
- G. Dingemans, M. C. M. Van De Sanden, and W. M. M. Kessels, “Plasma-enhanced chemical vapor deposition of aluminum oxide using ultrashort precursor injection pulses,” Plasma Processes and Polymers, vol. 9, no. 8, pp. 761–771, Aug. 2012, DOI: 10.1002/ppap.201100196. [CrossRef] [Google Scholar]
- S. Leone, I. Streicher, M. Prescher, P. Straňák, and L. Kirste, “Metal-Organic Chemical Vapor Deposition of Aluminum Yttrium Nitride,” Physica Status Solidi - Rapid Research Letters, Oct. 2023, DOI: 10.1002/pssr.202300091. [Google Scholar]
- G. Wagner, W. Leitenberger, K. Irmscher, F. Schmid, M. Laube, and G. Pensl, “Aluminum incorporation into 4H-SiC layers during epitaxial growth in a hot-wall CVD system,” Materials Science Forum, vol. 389-393, no. 1, pp. 207–210, 2002, DOI: 10.4028/www.scientific.net/msf.389-393.207. [CrossRef] [Google Scholar]
- H.-Y. Chen, H.-R. Stock, and P. Mayr, “Plasma-assisted nitriding of aluminium,” 1994. [Google Scholar]
- P. Visuttipitukul, T. Aizawa, and H. Kuwahara, “Advanced Plasma Nitriding for Aluminum and Aluminum Alloys.” [Google Scholar]
- M. C. Mehta, D. Mandal, and S. K. Chaudhury, “Microstructural Changes and Quality Improvement of Al7Si0.2Mg (356) Alloy by Die Vibration,” International Journal of Metalcasting, vol. 14, no. 4, pp. 987–998, Oct. 2020, DOI: 10.1007/s40962-020-00408-3. [CrossRef] [Google Scholar]
- E. B. Moustafa and A. O. Mosleh, “Effect of (Ti-B) modifier elements and FSP on 5052 aluminum alloy,” J Alloys Compd, Vol. 823, May 2020, DOI: 10.1016/j.jallcom.2020.153745. [Google Scholar]
- W. Xiao and Y. Wang, “Corrosion resistance of aluminum fluoride modified 6061 aluminum alloy,” Mater Lett, Vol. 298, Sep. 2021, DOI: 10.1016/j.matlet.2021.129932. [Google Scholar]
- B. Zhou, B. Liu, S. Zhang, R. Lin, Y. Jiang, and X. Lan, “Microstructure evolution of recycled 7075 aluminum alloy and its mechanical and corrosion properties,” J Alloys Compd, Vol. 879, Oct. 2021, DOI: 10.1016/j.jallcom.2021.160407. [Google Scholar]
- A. Bolouri and C. G. Kang, “Study on dimensional and corrosion properties of thixoformed A356 and AA7075 aluminum bipolar plates for proton exchange membrane fuel cells,” Renew Energy, vol. 71, pp. 616–628, 2014, DOI: 10.1016/j.renene.2014.06.021. [CrossRef] [Google Scholar]
- Z. Li, K. Feng, Z. Wang, X. Cai, C. Yao, and Y. Wu, “Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell,” in International Journal ofHydrogen Energy, Elsevier Ltd, May 2014, pp. 8421–8430. DOI: 10.1016/j.ijhydene.2014.03.136. [Google Scholar]
- W. M. Yan, J. C. Lin, C. Y. Chen, and M. Amani, “Performance evaluation of TiN/Ti coatings on the aluminum alloy bipolar plates for PEM fuel cells,” Renew Energy, Vol. 216, Nov. 2023, DOI: 10.1016/j.renene.2023.119042. [Google Scholar]
- P. Yi et al., “Effect of plasma electrolytic nitriding on the corrosion behavior and interfacial contact resistance of titanium in the cathode environment of protonexchange membrane fuel cells,” J Power Sources, vol. 418, pp. 42–49, Apr. 2019, DOI: 10.1016/j.jpowsour.2019.02.043. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.