Open Access
Issue
MATEC Web Conf.
Volume 393, 2024
2nd International Conference on Sustainable Technologies and Advances in Automation, Aerospace and Robotics (STAAAR-2023)
Article Number 01004
Number of page(s) 9
Section Materials Science and Manufacturing Processes
DOI https://doi.org/10.1051/matecconf/202439301004
Published online 13 March 2024
  1. G. B. Kumar, K. Sivaiah, S. Buddhudu, Synthesis and characterization of ZnWO4 ceramic powder, Ceram Int, 36, 1, 199–202 (2010) https://doi.Org/10.1016/j.ceramint.2009.07.005 [CrossRef] [Google Scholar]
  2. K. M. Garadkar, L. A. Ghule, K. B. Sapnar, S. D. Dhole, A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis, Mater Res Bull, 48, 3, 1105–1109, (2013). https://doi.org/10.1016/j.materresbull.2012.12.002 [CrossRef] [Google Scholar]
  3. U. K. Ghorui, P. Mondal, J. Satra, B. Adhikary, and A. Mondal, In situ metallic copper incorporation into novel g-C3N4/ZnWO4 nanocomposite semiconductor for efficient thin film solar cell application, Mater Sci Semicond Process, 143, 106559 (2022). https://doi.org/10.1016/j.mssp.2022.106559 [CrossRef] [Google Scholar]
  4. W. Ran, Q. Wang, Y. Zhou, S. Ding, J. Shi, J. H. Jeong, Fabrication of ZnWO4:Sm3+, Bi3+, Li+ with tunable white light-emitting properties for W-LEDs, Mater Res Bull, 64, 146–150 (2015). https://doi.org/10.1016/j.materresbull.2014.12.050 [CrossRef] [Google Scholar]
  5. A. Yadav, Shreya, N. K. Puri, Preliminary Observations of Synthesized WS2 and Various Synthesis Techniques for Preparation of Nanomaterials, In: Singari, R.M., Jain, P.K., Kumar, H. (eds) Advances in Manufacturing Technology and Management. Lecture Notes in Mechanical Engineering. Springer, Singapore, 546–556 (2023). https://doi.org/10.1007/978-981-16-9523-061 [Google Scholar]
  6. Shreya, A. Yadav, R. Khatri, N. Jain, A. Bhandari, N. K. Puri, Double Zone Thermal CVD and Plasma Enhanced CVD Systems for Deposition of Films/Coatings with Eminent Conformal Coverage, In: Singari, R.M., Jain, P.K., Kumar, H. (eds) Advances in Manufacturing Technology and Management. Lecture Notes in Mechanical Engineering. Springer, Singapore, 273–283 (2023). https://doi.org/10.1007/978-981-16-9523-031 [Google Scholar]
  7. E. C. da Severo, E. R. Abaide, C. G. Anchieta, V. S. Foletto, C. T. Weber, T. B. Garlet, G. C. Collazzo, M. A. Mazutti, A. Gundel, R. C. Kuhn, E. L. Foletto, Preparation of Zinc Tungstate (ZnWO4) Particles by Solvo-hydrothermal Technique and their Application as Support for Inulinase Immobilization, Materials Research, 19, 4, 781–785 (2016) https://doi.org/10.1590/1980-5373-MR-2015-0100 [CrossRef] [Google Scholar]
  8. H. L. Abubakar, J. O. Tijani, S. A. Abdulkareem, A. Mann, S. Mustapha, A review on the applications of zinc tungstate (ZnWO4) photocatalyst for wastewater treatment, Heliyon, 8, 7, e09964, (2022). https://doi.org/10.1016/j.heliyon.2022.e09964 [CrossRef] [Google Scholar]
  9. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, S. Sasikumar, J. NandhaGopal, R. Ramanathan, “ZnWO4:Eu3+ phosphor with intense blue LED excitation: photoluminescence and electron density distribution analysis.,” Luminescence, 36, 1, 99–109 (2020). https://doi.org/10.1002/bio.3920 [Google Scholar]
  10. P. Siriwong, T. Thongtem, A. Phuruangrat, and S. Thongtem, Hydrothermal synthesis, characterization, and optical properties of wolframite ZnWO4 nanorods, CrystEngComm, 13, 5, 1564–1569 (2011) https://doi.org/10.1039/C0CE00402B [CrossRef] [Google Scholar]
  11. S. M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, “Precipitation Synthesis, Characterization, Morphological Control, and Photocatalyst Application of ZnWO4 Nanoparticles,” J Electron Mater, 45, 7, 3612–3620 (2016). https://doi.org/10.1007/s11664-016-4532-3 [CrossRef] [Google Scholar]
  12. Shreya, P. Phogat, R. Jha, S. Singh, Microwave-synthesized Y-WO3 nanorods exhibiting high current density and diffusion characteristics, Transit Met Chem, 48, 167–183 (2023). http://dx.doi.org/10.1007/s11243-023-00533-y [CrossRef] [Google Scholar]
  13. Shreya, P. Phogat, R. Jha, S. Singh, Elevated Refractive Index of MoS2 Amorphous Nanoparticles with a Reduced Band Gap Applicable for Optoelectronics, In: Sethuraman, B., Jain, P., Gupta, M. (eds) Recent Advances in Mechanical Engineering. STAAAR 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore., 431–439 (2023). http://dx.doi.org/10.1007/978-981-99-2349-639 [Google Scholar]
  14. P. Phogat, Shreya, R. Jha, and S. Singh, Optical and Microstructural Study of Wide Band Gap ZnO@ZnS Core-Shell Nanorods to be Used as Solar Cell Applications, In: Sethuraman, B., Jain, P., Gupta, M. (eds) Recent Advances in Mechanical Engineering. STAAAR 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore., 419–429 (2023). http://dx.doi.org/10.1007/978-981-99-2349-638 [Google Scholar]
  15. P. Phogat, S. Shreya, R. Jha, and S. Singh, Diffusion Controlled Features of Microwave Assisted ZnS/ZnO Nanocomposite with Reduced Band Gap, ECS J. Solid State Sci. Technol., 12, 3, 034004 (2023). http://dx.doi.org/10.1149/2162-8777/acc426 [CrossRef] [Google Scholar]
  16. J. Dahiya, P. Phogat, A. Hooda, S. Khasa, Investigations of Praseodymium doped LiF-ZnO-Bi2O3-B2O3 glass matrix for photonic applications. AIP Conf Proc, 2995, 020065 (2024). http://dx.doi.org/10.1063/5.0178197 [CrossRef] [Google Scholar]
  17. T. Kumar, Shreya, P. Phogat, V. Sahgal, and R. Jha, Surfactant-mediated modulation of morphology and charge transfer dynamics in tungsten oxide nanoparticles. Phys Scr, 98, 8, 085936 (2023). http://dx.doi.org/10.1088/1402-4896/ace566 [CrossRef] [Google Scholar]
  18. S. Sharma, P. Phogat, R. Jha, S. Singh, Electrochemical and Optical Properties of Microwave Assisted MoS2 Nanospheres for Solar Cell Application. International Journal of Smart Grid and Clean Energy, 12, 3, 66–72 (2023). http://dx.doi.org/10.12720/sgce.12.3.66-72 [CrossRef] [Google Scholar]
  19. N. A. Shad, S. Z. Bajwa, N. Amin, A. Taj, S. Hameed, Y. Khan, Z. Dai, C. Cao, W. Khan, Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J Hazard Mater, 367, 205–214 (2019). https://doi.org/10.1016/i.įhazmat.2018.12.072 [CrossRef] [Google Scholar]
  20. P. Phogat, Shreya, R. Jha, S. Singh, Electrochemical analysis of thermally treated two dimensional zinc sulphide hexagonal nano-sheets with reduced band gap. Phys Scr, 98, 12, 125962 (2023). http://dx.doi.org/10.1088/1402-4896/ad0d93 [CrossRef] [Google Scholar]
  21. Dipti, P. Phogat, Shreya, D. Kumari, S. Singh, Fabrication of tunable band gap carbon based zinc nanocomposites for enhanced capacitive behaviour. Phys Scr, 98, 9, 095030 (2023). http://dx.doi.org/10.1088/1402-4896/acf07b [CrossRef] [Google Scholar]
  22. P. Phogat, S. Shreya, R. Jha, S. Singh, Impedance Study of Zinc Sulphide Quantum Dots via One Step Green Synthesis. Materials Science Forum, 1099, 119–125, (2023). http://dx.doi.org/10.4028/p-G1CCxq [CrossRef] [Google Scholar]
  23. D. Kumari, Shreya, P. Phogat, Dipti, S. Singh, R. Jha, Enhanced electrochemical behavior of C@CdS Core-Shell heterostructures. Materials Science and Engineering: B., 301, 117212, (2024). https://doi.org/10.1016/j.mseb.2024.117212 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.