Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01192 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202439201192 | |
Published online | 18 March 2024 |
- T. Tabassum, S. Lim, and M. R. Khalghani, “Artificial intelligence-based detection and mitigation of cyber disruptions in microgrid control,” Electric Power Systems Research, vol. 226, Jan. 2024, doi: 10.1016/j.epsr.2023.109925. [CrossRef] [Google Scholar]
- R. K. Jalli, S. P. Mishra, P. K. Dash, and J. Naik, “Fault analysis of photovoltaic based DC microgrid using deep learning randomized neural network,” Appl Soft Comput, vol. 126, Sep. 2022, doi: 10.1016/j.asoc.2022.109314. [CrossRef] [Google Scholar]
- M. Daisy, M. Hosseini Aliabadi, S. Javadi, and H. Meyar Naimi, “A robust transient and sustainable faults location approach for AC microgrid based on voltage and current difference measurements,” International Journal of Electrical Power and Energy Systems, vol. 153, Nov. 2023, doi: 10.1016/j.ijepes.2023.109343. [CrossRef] [Google Scholar]
- M. Ahmadipour, M. M. Othman, R. Bo, Z. Salam, H. M. Ridha, and K. Hasan, “A novel microgrid fault detection and classification method using maximal overlap discrete wavelet packet transform and an augmented Lagrangian particle swarm optimization-support vector machine,” Energy Reports, vol. 8, pp. 4854–4870, Nov. 2022, doi: 10.1016/j.egyr.2022.03.174. [CrossRef] [Google Scholar]
- “Machine Learning Approaches for Fault Detection in Renewable Microgrids – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Machine%20Learning%20Approaches%20for%20Fault%20Detection%20in%20Renewable%20Microgrids [Google Scholar]
- I. Almutairy and M. Alluhaidan, “Fault Diagnosis Based Approach to Protecting DC Microgrid Using Machine Learning Technique,” Procedia Comput Sci, vol. 114, pp. 449–456, 2017, doi: 10.1016/j.procs.2017.09.019. [CrossRef] [Google Scholar]
- A. G. Rameshrao, E. Koley, and S. Ghosh, “A LSTM-based approach for detection of high impedance faults in hybrid microgrid with immunity against weather intermittency and N-1 contingency,” Renew Energy, vol. 198, pp. 75–90, Oct. 2022, doi: 10.1016/j.renene.2022.08.028. [CrossRef] [Google Scholar]
- S. Dutta, S. K. Sahu, S. Dutta, and B. Dey, “Leveraging a micro synchrophasor for fault detection in a renewable based smart grid—A machine learned sustainable solution with cyber-attack resiliency,” e-Prime – Advances in Electrical Engineering, Electronics and Energy, vol. 2, Jan. 2022, doi: 10.1016/j.prime.2022.100090. [Google Scholar]
- T. Tabassum, O. Toker, and M. R. Khalghani, “Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network,” Appl Energy, vol. 355, p. 122283, Feb. 2024, doi: 10.1016/j.apenergy.2023.122283. [CrossRef] [Google Scholar]
- P. Pan and R. K. Mandal, “Learning approach based DC arc fault location classification in DC microgrids,” Electric Power Systems Research, vol. 208, Jul. 2022, doi: 10.1016/j.epsr.2022.107874. [Google Scholar]
- B. Deshmukh, D. Kumar Lal, and S. Biswal, “A reconstruction based adaptive fault detection scheme for distribution system containing AC microgrid,” International Journal of Electrical Power and Energy Systems, vol. 147, May 2023, doi: 10.1016/j.ijepes.2022.108801. [CrossRef] [Google Scholar]
- M. Lei and M. Mohammadi, “Hybrid machine learning based energy policy and management in the renewable-based microgrids considering hybrid electric vehicle charging demand,” International Journal of Electrical Power and Energy Systems, vol. 128, Jun. 2021, doi: 10.1016/j.ijepes.2020.106702. [Google Scholar]
- A. Srivastava and S. K. Parida, “Data driven approach for fault detection and Gaussian process regression based location prognosis in smart AC microgrid,” Electric Power Systems Research, vol. 208, Jul. 2022, doi: 10.1016/j.epsr.2022.107889. [CrossRef] [Google Scholar]
- D. G. Rosero, N. L. Díaz, and C. L. Trujillo, “Cloud and machine learning experiments applied to the energy management in a microgrid cluster,” Appl Energy, vol. 304, Dec. 2021, doi: 10.1016/j.apenergy.2021.117770. [CrossRef] [Google Scholar]
- R. Montoya, B. P. Poudel, A. Bidram, and M. J. Reno, “DC microgrid fault detection using multiresolution analysis of traveling waves,” International Journal of Electrical Power and Energy Systems, vol. 135, Feb. 2022, doi: 10.1016/j.ijepes.2021.107590. [CrossRef] [Google Scholar]
- M. Daisy, M. Hosseini Aliabadi, S. Javadi, and H. Meyar Naimi, “Data-driven fault location approach in AC/DC microgrids based on fault voltage and current differences,” Sustainable Energy, Grids and Networks, vol. 36, Dec. 2023, doi: 10.1016/j.segan.2023.101235. [CrossRef] [Google Scholar]
- M. Uzair, L. Li, M. Eskandari, J. Hossain, and J. G. Zhu, “Challenges, advances and future trends in AC microgrid protection: With a focus on intelligent learning methods,” Renewable and Sustainable Energy Reviews, vol. 178, May 2023, doi: 10.1016/j.rser.2023.113228. [CrossRef] [Google Scholar]
- R. Wazirali, E. Yaghoubi, M. S. S. Abujazar, R. Ahmad, and A. H. Vakili, “State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques,” Electric Power Systems Research, vol. 225, Dec. 2023, doi: 10.1016/j.epsr.2023.109792. [CrossRef] [Google Scholar]
- A. Haque, V. S. B. Kurukuru, M. A. Khan, A. Malik, and F. Fayaz, “Centralized intelligent fault localization approach for renewable energy-based islanded microgrid systems,” Applications of AI and IOT in Renewable Energy, pp. 129–149, Jan. 2022, doi: 10.1016/B978-0-323-91699-8.00007-3. [Google Scholar]
- K. Anjaiah, S. R. Pattnaik, P. K. Dash, and R. Bisoi, “A real-time DC faults diagnosis in a DC ring microgrid by using derivative current based optimal weighted broad learning system,” Appl Soft Comput, vol. 142, Jul. 2023, doi: 10.1016/j.asoc.2023.110334. [CrossRef] [Google Scholar]
- R. Aiswarya, D. S. Nair, T. Rajeev, and V. Vinod, “A novel SVM based adaptive scheme for accurate fault identification in microgrid,” Electric Power Systems Research, vol. 221, Aug. 2023, doi: 10.1016/j.epsr.2023.109439. [Google Scholar]
- P. K. Dash, S. Rekha Pattnaik, E. N.V.D.V. Prasad, and R. Bisoi, “Detection and classification of DC and feeder faults in DC microgrid using new morphological operators with multi class AdaBoost algorithm,” Appl Energy, vol. 340, Jun. 2023, doi: 10.1016/j.apenergy.2023.121013. [Google Scholar]
- S. Roy and S. Debnath, “A wavelet based PSD approach for fault detection and classification in grid connected inverter interfaced microgrid,” Measurement, p. 114079, Dec. 2023, doi: 10.1016/J.MEASUREMENT.2023.114079. [Google Scholar]
- M. Y. Arafat, M. J. Hossain, and M. M. Alam, “Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects,” Renewable and Sustainable Energy Reviews, vol. 190, p. 114088, Feb. 2024, doi: 10.1016/j.rser.2023.114088. [CrossRef] [Google Scholar]
- A. Cano, P. Arévalo, D. Benavides, and F. Jurado, “Integrating discrete wavelet transform with neural networks and machine learning for fault detection in microgrids,” International Journal of Electrical Power and Energy Systems, vol. 155, Jan. 2024, doi: 10.1016/j.ijepes.2023.109616. [CrossRef] [Google Scholar]
- R. Divya, S. Umamaheswari, and A. A. Stonier, “Machine learning based smart intrusion and fault identification (SIFI) in inverter based cyber-physical microgrids,” Expert Syst Appl, vol. 238, Mar. 2024, doi: 10.1016/j.eswa.2023.122291. [CrossRef] [Google Scholar]
- Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [CrossRef] [Google Scholar]
- V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]
- M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
- M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
- M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
- C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [Google Scholar]
- G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
- P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
- M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
- Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.