Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01184 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202439201184 | |
Published online | 18 March 2024 |
- S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
- C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [Google Scholar]
- G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
- P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
- M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
- K. Kumar et al., “From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01198. [Google Scholar]
- M. Z. ul Haq et al., “Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01205. [Google Scholar]
- M. Z. ul Haq et al., “Circular Economy Enabler: Enhancing High-Performance Bricks through Geopolymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01202. [Google Scholar]
- M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
- M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
- S. Yang, R. He, Z. Zhang, Y. Cao, X. Gao, and X. Liu, “CHAIN: Cyber Hierarchy and Interactional Network Enabling Digital Solution for Battery Full-Lifespan Management,” Matter, vol. 3, no. 1, pp. 27–41, Jul. 2020, doi: 10.1016/j.matt.2020.04.015. [CrossRef] [Google Scholar]
- H. Mouratidis, S. Islam, A. Santos-Olmo, L. E. Sanchez, and U. M. Ismail, “Modelling language for cyber security incident handling for critical infrastructures,” Comput Secur, vol. 128, May 2023, doi: 10.1016/j.cose.2023.103139. [CrossRef] [Google Scholar]
- A. Si-Ahmed, M. A. Al-Garadi, and N. Boustia, “Survey of Machine Learning based intrusion detection methods for Internet of Medical Things,” Appl Soft Comput, vol. 140, Jun. 2023, doi: 10.1016/j.asoc.2023.110227. [CrossRef] [Google Scholar]
- R. Rawat, V. Mahor, B. Garg, M. Chouhan, K. Pachlasiya, and S. Telang, “Modeling of cyber threat analysis and vulnerability in IoT-based healthcare systems during COVID,” Lessons from COVID-19: Impact on Healthcare Systems and Technology, pp. 405–425, Jan. 2022, doi: 10.1016/B978-0-323-99878-9.00016-9. [Google Scholar]
- M. Ghiasi, T. Niknam, Z. Wang, M. Mehrandezh, M. Dehghani, and N. Ghadimi, “A comprehensive review of cyber-attacks and defense mechanisms for improving security in smart grid energy systems: Past, present and future,” Electric Power Systems Research, vol. 215, Feb. 2023, doi: 10.1016/j.epsr.2022.108975. [CrossRef] [Google Scholar]
- “Securing Electric Transportation Networks: A Machine Learning-driven Cyber Threat Detection – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Securing%20Electric%20Transportation%20Networks%3A%20A%20Machine%20Learning-driven%20Cyber%20Threat%20Detection [Google Scholar]
- R. Canonico and G. Sperlì, “Industrial cyber-physical systems protection: A methodological review,” Comput Secur, vol. 135, Dec. 2023, doi: 10.1016/j.cose.2023.103531. [CrossRef] [Google Scholar]
- D. Tang, Y. P. Fang, and E. Zio, “Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods,” Reliab Eng Syst Saf, vol. 235, Jul. 2023, doi: 10.1016/j.ress.2023.109212. [CrossRef] [Google Scholar]
- A. Balla, M. H. Habaebi, M. R. Islam, and S. Mubarak, “Applications of deep learning algorithms for Supervisory Control and Data Acquisition intrusion detection system,” Clean Eng Technol, vol. 9, Aug. 2022, doi: 10.1016/j.clet.2022.100532. [Google Scholar]
- G. Epiphaniou, M. Hammoudeh, H. Yuan, C. Maple, and U. Ani, “Digital twins in cyber effects modelling of IoT/CPS points of low resilience,” Simul Model Pract Theory, vol. 125, May 2023, doi: 10.1016/j.simpat.2023.102744. [CrossRef] [Google Scholar]
- T. Berghout, M. Benbouzid, and S. M. Muyeen, “Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects,” International Journal of Critical Infrastructure Protection, vol. 38, Sep. 2022, doi: 10.1016/j.ijcip.2022.100547. [CrossRef] [Google Scholar]
- A. H. El-Kady, S. Halim, M. M. El-Halwagi, and F. Khan, “Analysis of safety and security challenges and opportunities related to cyber-physical systems,” Process Safety and Environmental Protection, vol. 173, pp. 384–413, May 2023, doi: 10.1016/j.psep.2023.03.012. [CrossRef] [Google Scholar]
- P. Kumar, R. Kumar, A. Aljuhani, D. Javeed, A. Jolfaei, and A. K. M. N. Islam, “Digital twin-driven SDN for smart grid: A deep learning integrated blockchain for cybersecurity,” Solar Energy, vol. 263, Oct. 2023, doi: 10.1016/j.solener.2023.111921. [CrossRef] [Google Scholar]
- G. Zhang, J. Li, O. Bamisile, Y. Xing, D. Cao, and Q. Huang, “Identification and classification for multiple cyber attacks in power grids based on the deep capsule CNN,” Eng Appl Artif Intell, vol. 126, Nov. 2023, doi: 10.1016/j.engappai.2023.106771. [Google Scholar]
- A. A. Habib, M. K. Hasan, A. Alkhayyat, S. Islam, R. Sharma, and L. M. Alkwai, “False data injection attack in smart grid cyber physical system: Issues, challenges, and future direction,” Computers and Electrical Engineering, vol. 107, Apr. 2023, doi: 10.1016/j.compeleceng.2023.108638. [CrossRef] [Google Scholar]
- S. Ali, Q. Li, and A. Yousafzai, “Blockchain and federated learning-based intrusion detection approaches for edge-enabled industrial IoT networks: a survey,” Ad Hoc Networks, vol. 152, Jan. 2024, doi: 10.1016/j.adhoc.2023.103320. [Google Scholar]
- R. V. Yohanandhan, R. M. Elavarasan, R. Pugazhendhi, M. Premkumar, L. Mihet-Popa, and V. Terzija, “A holistic review on Cyber-Physical Power System (CPPS) testbeds for secure and sustainable electric power grid – Part – II: Classification, overview and assessment of CPPS testbeds,” International Journal of Electrical Power and Energy Systems, vol. 137, May 2022, doi: 10.1016/j.ijepes.2021.107721. [CrossRef] [Google Scholar]
- İ. Yazici, I. Shayea, and J. Din, “A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems,” Engineering Science and Technology, an International Journal, vol. 44, Aug. 2023, doi: 10.1016/j.jestch.2023.101455. [CrossRef] [Google Scholar]
- G. Zhang, J. Li, Y. Xing, O. Bamisile, and Q. Huang, “Data-driven load frequency cooperative control for multi-area power system integrated with VSCs and EV aggregators under cyber-attacks,” ISA Trans, Dec. 2023, doi: 10.1016/j.isatra.2023.09.018. [Google Scholar]
- W. Wang, F. Harrou, B. Bouyeddou, S. M. Senouci, and Y. Sun, “Cyber-attacks detection in industrial systems using artificial intelligence-driven methods,” International Journal of Critical Infrastructure Protection, vol. 38, Sep. 2022, doi: 10.1016/j.ijcip.2022.100542. [Google Scholar]
- T. N. I. Alrumaih, M. J. F. Alenazi, N. A. AlSowaygh, A. A. Humayed, and I. A. Alablani, “Cyber resilience in industrial networks: A state of the art, challenges, and future directions,” Journal of King Saud University – Computer and Information Sciences, vol. 35, no. 9, Oct. 2023, doi: 10.1016/j.jksuci.2023.101781. [Google Scholar]
- R. V. Yohanandhan, R. M. Elavarasan, R. Pugazhendhi, M. Premkumar, L. Mihet-Popa, and V. Terzija, “A holistic review on Cyber-Physical Power System (CPPS) testbeds for secure and sustainable electric power grid – Part – I: Background on CPPS and necessity of CPPS testbeds,” International Journal of Electrical Power and Energy Systems, vol. 136, Mar. 2022, doi: 10.1016/j.ijepes.2021.107718. [Google Scholar]
- T. A. Shaikh, T. Rasool, and P. Verma, “Machine intelligence and medical cyber-physical system architectures for smart healthcare: Taxonomy, challenges, opportunities, and possible solutions,” Artif Intell Med, vol. 146, Dec. 2023, doi: 10.1016/j.artmed.2023.102692. [CrossRef] [Google Scholar]
- Y. Cao et al., “Towards cyber security for low-carbon transportation: Overview, challenges and future directions,” Renewable and Sustainable Energy Reviews, vol. 183, Sep. 2023, doi: 10.1016/j.rser.2023.113401. [Google Scholar]
- H. Bangui and B. Buhnova, “Recent advances in machine-learning driven intrusion detection in transportation: Survey,” Procedia Comput Sci, vol. 184, pp. 877–886, 2021, doi: 10.1016/j.procs.2021.04.014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.