Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01180 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202439201180 | |
Published online | 18 March 2024 |
- S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
- C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [Google Scholar]
- G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
- P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
- M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
- Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [CrossRef] [Google Scholar]
- V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]
- M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
- M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
- M. Z. ul Haq et al., “Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01203. [Google Scholar]
- I. Rahman, P. M. Vasant, B. S. M. Singh, M. Abdullah-Al-Wadud, and N. Adnan, “Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1039–1047, May 2016, doi: 10.1016/j.rser.2015.12.353. [CrossRef] [Google Scholar]
- A. Kirimtat, M. Fatih Tasgetiren, O. Krejcar, O. Buyukdagli, and P. Maresova, “A multi-objective optimization framework for functional arrangement in smart floating cities,” Expert Syst Appl, vol. 237, Mar. 2024, doi: 10.1016/j.eswa.2023.121476. [CrossRef] [Google Scholar]
- S. Ray, K. Kasturi, S. Patnaik, and M. R. Nayak, “Review of electric vehicles integration impacts in distribution networks: Placement, charging/discharging strategies, objectives and optimisation models,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108672. [Google Scholar]
- Z. Zhou, Z. Liu, H. Su, L. Zhang, and W. Wang, “Multi-Objective Optimization of Operation of Power-Traffic Systems Considering Dynamic Wireless Charging,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 6654–6659, 2023, doi: 10.1016/J.IFACOL.2023.10.367. [CrossRef] [Google Scholar]
- H. Ma, Z. Yang, P. You, and M. Fei, “Multi-objective biogeography-based optimization for dynamic economic emission load dispatch considering plug-in electric vehicles charging,” Energy, vol. 135, pp. 101–111, 2017, doi: 10.1016/j.energy.2017.06.102. [CrossRef] [Google Scholar]
- N. Kumar, T. Kumar, S. Nema, and T. Thakur, “Reliability oriented techno– economic assessment of fast charging stations with photovoltaic and battery systems in paired distribution & urban network,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108814. [Google Scholar]
- C. E. Tungom, B. Niu, and H. Wang, “Hierarchical framework for demand prediction and iterative optimization of EV charging network infrastructure under uncertainty with cost and quality-of-service consideration[Formula presented],” Expert Syst Appl, vol. 237, Mar. 2024, doi: 10.1016/j.eswa.2023.121761. [CrossRef] [Google Scholar]
- Z. Yi, B. Chen, X. C. Liu, R. Wei, J. Chen, and Z. Chen, “An agent-based modeling approach for public charging demand estimation and charging station location optimization at urban scale,” Comput Environ Urban Syst, vol. 101, Apr. 2023, doi: 10.1016/j.compenvurbsys.2023.101949. [Google Scholar]
- S. Zapotecas-Martínez, R. Armas, and A. García-Nájera, “A multi-objective evolutionary approach for the electric vehicle charging stations problem,” Expert Syst Appl, vol. 240, p. 122514, Apr. 2024, doi: 10.1016/j.eswa.2023.122514. [CrossRef] [Google Scholar]
- B. Aljafari, P. R. Jeyaraj, A. C. Kathiresan, and S. B. Thanikanti, “Electric vehicle optimum charging-discharging scheduling with dynamic pricing employing multi agent deep neural network,” Computers and Electrical Engineering, vol. 105, Jan. 2023, doi: 10.1016/j.compeleceng.2022.108555. [CrossRef] [Google Scholar]
- M. Ahmed, S. H. Kamel, N. H. Abbasy, and Y. Abouelseoud, “A Gaussian random walk salp swarm algorithm for optimal dynamic charging of electric vehicles,” Appl Soft Comput, vol. 147, Nov. 2023, doi: 10.1016/j.asoc.2023.110838. [CrossRef] [Google Scholar]
- H. M. Hasanien et al., “Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehicles,” Energy, vol. 286, Jan. 2024, doi: 10.1016/j.energy.2023.129583. [CrossRef] [Google Scholar]
- N. Erdogan, D. Pamucar, S. Kucuksari, and M. Deveci, “An integrated multi-objective optimization and multi-criteria decision-making model for optimal planning of workplace charging stations,” Appl Energy, vol. 304, Dec. 2021, doi: 10.1016/j.apenergy.2021.117866. [CrossRef] [Google Scholar]
- Z. Mohammadi, P. Ahmadi, and M. Ashjaee, “Comparative transient assessment and optimization of battery and hydrogen energy storage systems for near-zero energy buildings,” Renew Energy, vol. 220, Jan. 2024, doi: 10.1016/j.renene.2023.119680. [CrossRef] [Google Scholar]
- M. Abdi-Siab and H. Lesani, “Distribution expansion planning in the presence of plug-in electric vehicle: A bilevel optimization approach,” International Journal of Electrical Power and Energy Systems, vol. 121, Oct. 2020, doi: 10.1016/j.ijepes.2020.106076. [CrossRef] [Google Scholar]
- “Evolutionary Algorithms for Dynamic Optimization of Plug-in Charging Station Networks – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Evolutionary%20Algorithms%20for%20Dynamic%20Optimization%20of%20Plug-in%20Charging%20Station%20Networks [Google Scholar]
- A. K. Vamsi Krishna Reddy and K. Venkata Lakshmi Narayana, “Meta-heuristics optimization in electric vehicles –an extensive review,” Renewable and Sustainable Energy Reviews, vol. 160, May 2022, doi: 10.1016/j.rser.2022.112285. [CrossRef] [Google Scholar]
- Z. Yan, X. Duan, Y. Chang, Z. Xu, and B. Sobhani, “Optimal energy management in smart buildings with electric vehicles based on economic and risk aspects using developed whale optimization algorithm,” J Clean Prod, vol. 415, Aug. 2023, doi: 10.1016/j.jclepro.2023.137710. [Google Scholar]
- K. Bhushan Sahay, M. A. S. Abourehab, A. Mehbodniya, J. L. Webber, R. Kumar, and U. Sakthi, “Computation of electrical vehicle charging station (evcs) with coordinate computation based on meta-heuristics optimization model with effective management strategy for optimal charging and energy saving,” Sustainable Energy Technologies and Assessments, vol. 53, Oct. 2022, doi: 10.1016/j.seta.2022.102439. [CrossRef] [Google Scholar]
- S. R. Gampa, K. Jasthi, P. Goli, D. Das, and R. C. Bansal, “Grasshopper optimization algorithm based two stage fuzzy multiobjective approach for optimum sizing and placement of distributed generations, shunt capacitors and electric vehicle charging stations,” J Energy Storage, vol. 27, Feb. 2020, doi: 10.1016/j.est.2019.101117. [CrossRef] [Google Scholar]
- S. Moazzeni, M. Tavana, and S. Mostafayi Darmian, “A dynamic location-arc routing optimization model for electric waste collection vehicles,” J Clean Prod, vol. 364, Sep. 2022, doi: 10.1016/j.jclepro.2022.132571. [CrossRef] [Google Scholar]
- S. Suganya, S. C. Raja, and P. Venkatesh, “Simultaneous coordination of distinct plug-in Hybrid Electric Vehicle charging stations: A modified Particle Swarm Optimization approach,” Energy, vol. 138, pp. 92–102, 2017, doi: 10.1016/j.energy.2017.07.036. [CrossRef] [Google Scholar]
- Z. Wang, K. Ye, M. Jiang, J. Yao, N. N. Xiong, and G. G. Yen, “Solving hybrid charging strategy electric vehicle based dynamic routing problem via evolutionary multi-objective optimization,” Swarm Evol Comput, vol. 68, Feb. 2022, doi: 10.1016/j.swevo.2021.100975. [Google Scholar]
- A. Ala, M. Deveci, E. A. Bani, and A. H. Sadeghi, “Dynamic Capacitated Facility Location Problem in Mobile Renewable Energy Charging Stations under Sustainability Consideration,” Sustainable Computing: Informatics and Systems, p. 100954, Dec. 2023, doi: 10.1016/J.SUSCOM.2023.100954. [Google Scholar]
- E. A. Rene, W. S. Tounsi Fokui, and P. K. Nembou Kouonchie, “Optimal allocation of plug-in electric vehicle charging stations in the distribution network with distributed generation,” Green Energy and Intelligent Transportation, vol. 2, no. 3, Jun. 2023, doi: 10.1016/j.geits.2023.100094. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.