Open Access
Issue |
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
|
|
---|---|---|
Article Number | 01177 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/matecconf/202439201177 | |
Published online | 18 March 2024 |
- “Metaheuristic Algorithms for Optimal Sizing of Renewable Energy Systems in Smart Grids – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Metaheuristic%20Algorithms%20for%20Optimal%20Sizing%20of%20Renewable%20Energy%20Systems%20in%20Smart%20Grids [Google Scholar]
- C. Schellenberg, J. Lohan, and L. Dimache, “Comparison of metaheuristic optimisation methods for grid-edge technology that leverages heat pumps and thermal energy storage,” Renewable and Sustainable Energy Reviews, vol. 131, Oct. 2020, doi: 10.1016/j.rser.2020.109966. [CrossRef] [Google Scholar]
- R. Hasan, M. S. Masud, N. Haque, and M. R. Abdussami, “Frequency control of nuclear-renewable hybrid energy systems using optimal PID and FOPID controllers,” Heliyon, vol. 8, no. 11, Nov. 2022, doi: 10.1016/j.heliyon.2022.e11770. [Google Scholar]
- V. Suresh, P. Janik, M. Jasinski, J. M. Guerrero, and Z. Leonowicz, “Microgrid energy management using metaheuristic optimization algorithms,” Appl Soft Comput, vol. 134, Feb. 2023, doi: 10.1016/j.asoc.2022.109981. [CrossRef] [Google Scholar]
- R. Fiorotti, I. Yahyaoui, H. R. O. Rocha, Í. Honorato, J. Silva, and F. Tadeo, “Demand planning of a nearly zero energy building in a PV/grid-connected system,” Renewable Energy Focus, vol. 45, pp. 220–233, Jun. 2023, doi: 10.1016/j.ref.2023.04.005. [CrossRef] [Google Scholar]
- S. Barua and A. Merabet, “Lévy Arithmetic Algorithm: An enhanced metaheuristic algorithm and its application to engineering optimization,” Expert Syst Appl, p. 122335, May 2023, doi: 10.1016/j.eswa.2023.122335. [Google Scholar]
- B. Li and W. Tan, “A novel framework for integrating solar renewable source into smart cities through digital twin simulations,” Solar Energy, vol. 262, Sep. 2023, doi: 10.1016/j.solener.2023.111869. [Google Scholar]
- H. Yang, S. Zhang, J. Zeng, S. Tang, and S. Xiong, “Future of sustainable renewable-based energy systems in smart city industry: Interruptible load scheduling perspective,” Solar Energy, vol. 263, Oct. 2023, doi: 10.1016/j.solener.2023.111866. [CrossRef] [Google Scholar]
- B. O. Abisoye, Y. Sun, and W. Zenghui, “A survey of artificial intelligence methods for renewable energy forecasting: Methodologies and insights,” Renewable Energy Focus, vol. 48, p. 100529, Mar. 2024, doi: 10.1016/J.REF.2023.100529. [CrossRef] [Google Scholar]
- S. Mohseni, A. C. Brent, and D. Burmester, “A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid,” Appl Energy, vol. 259, Feb. 2020, doi: 10.1016/j.apenergy.2019.114224. [CrossRef] [Google Scholar]
- H. M. Hasanien, I. Alsaleh, A. Alassaf, and A. Alateeq, “Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles,” Energy, vol. 283, Nov. 2023, doi: 10.1016/j.energy.2023.129069. [CrossRef] [Google Scholar]
- M. Fotopoulou, D. Rakopoulos, S. Petridis, and P. Drosatos, “Assessment of smart grid operation under emergency situations,” Energy, p. 129661, Jan. 2023, doi: 10.1016/j.energy.2023.129661. [Google Scholar]
- A. Bhimaraju, A. Mahesh, and J. S. Nirbheram, “Feasibility study of solar photovoltaic/grid-connected hybrid renewable energy system with pumped storage hydropower system using abandoned open cast coal mine: A case study in India,” J Energy Storage, vol. 72, Nov. 2023, doi: 10.1016/j.est.2023.108206. [CrossRef] [Google Scholar]
- H. M. Hasanien, I. Alsaleh, M. Tostado-Véliz, A. Alassaf, A. Alateeq, and F. Jurado, “Optimal parameters estimation of lithium-ion battery in smart grid Energy, vol. 285, Dec. 2023, doi: 10.1016/j.energy.2023.129509. [CrossRef] [Google Scholar]
- C. B. Pop et al., “Review of bio-inspired optimization applications in renewable-powered smart grids: Emerging population-based metaheuristics,” Energy Reports, vol. 8, pp. 11769–11798, Nov. 2022, doi: 10.1016/j.egyr.2022.09.025. [CrossRef] [Google Scholar]
- L. F. Grisales-Noreña, J. A. Ocampo-Toro, O. D. Montoya-Giraldo, J. Montano, and J. C. Hernandéz, “Optimal operation of battery storage systems in standalone and grid-connected DC microgrids using parallel metaheuristic optimization algorithms,” J Energy Storage, vol. 65, Aug. 2023, doi: 10.1016/j.est.2023.107240. [Google Scholar]
- X. Qi, B. N. Khattak, A. Alam, W. Liu, and S. Saeedi, “Optimal energy modeling and planning in the power system via a hybrid firefly and cuckoo algorithm in the presence of renewable energy sources and electric vehicles,” Alexandria Engineering Journal, vol. 76, pp. 333–348, Aug. 2023, doi: 10.1016/j.aej.2023.06.036. [CrossRef] [Google Scholar]
- N. Bacanin et al., “Multivariate energy forecasting via metaheuristic tuned long-short term memory and gated recurrent unit neural networks,” Inf Sci (N Y), vol. 642, Sep. 2023, doi: 10.1016/j.ins.2023.119122. [Google Scholar]
- M. Papadimitrakis, N. Giamarelos, M. Stogiannos, E. N. Zois, N. A. I. Livanos, and A. Alexandridis, “Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications,” Renewable and Sustainable Energy Reviews, vol. 145, Jul. 2021, doi: 10.1016/j.rser.2021.111072. [CrossRef] [Google Scholar]
- Q. Wang, G. Chen, M. Khishe, B. F. Ibrahim, and S. Rashidi, “Multi-objective optimization of IoT-based green building energy system using binary metaheuristic algorithms,” Journal of Building Engineering, vol. 68, Jun. 2023, doi: 10.1016/j.jobe.2023.106031. [Google Scholar]
- G. H. Valencia-Rivera et al., “A systematic review of metaheuristic algorithms in electric power systems optimization,” Appl Soft Comput, vol. 150, p. 111047, Jan. 2024, doi: 10.1016/j.asoc.2023.111047. [CrossRef] [Google Scholar]
- A. O. Ali, M. R. Elmarghany, M. M. Abdelsalam, M. N. Sabry, and A. M. Hamed, “Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review,” J Energy Storage, vol. 50, Jun. 2022, doi: 10.1016/j.est.2022.104609. [Google Scholar]
- M. Thirunavukkarasu, H. Lala, and Y. Sawle, “Reliability index based optimal sizing and statistical performance analysis of stand-alone hybrid renewable energy system using metaheuristic algorithms,” Alexandria Engineering Journal, vol. 74, pp. 387–413, Jul. 2023, doi: 10.1016/j.aej.2023.04.070. [CrossRef] [Google Scholar]
- A. F. Güven and O. Ö. Mengi, “Assessing metaheuristic algorithms in determining dimensions of hybrid energy systems for isolated rural environments: Exploring renewable energy systems with hydrogen storage features,” J Clean Prod, vol. 428, Nov. 2023, doi: 10.1016/j.jclepro.2023.139339. [Google Scholar]
- S. Sankarananth, M. Karthiga, E. Suganya, S. Sountharrajan, and D. P. Bavirisetti, “AI-enabled metaheuristic optimization for predictive management of renewable energy production in smart grids,” Energy Reports, vol. 10, pp. 1299–1312, Nov. 2023, doi: 10.1016/j.egyr.2023.08.005. [CrossRef] [Google Scholar]
- Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
- M. Nandal, H. Sood, P. K. Gupta, and M. Z. U. Haq, “Morphological and physical characterization of construction and demolition waste,” Mater Today Proc, 2022. [Google Scholar]
- S. Kumar, A. Chopra, and M. Z. U. Haq, “EXPERIMENTAL INVESTIGATION ON MARBLE DUST, RICE HUSK ASH, AND FLY ASH BASED GEOPOLYMER BRICK”. [Google Scholar]
- V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), pp. 1–15, 2023. [Google Scholar]
- H. Sood, R. Kumar, P. C. Jena, and S. K. Joshi, “Optimizing the strength of geopolymer concrete incorporating waste plastic,” Mater Today Proc, 2023. [Google Scholar]
- D. Aghimien et al., “Barriers to Digital Technology Deployment in Value Management Practice,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060731. [CrossRef] [Google Scholar]
- M. Arora, A. Prakash, S. Dixit, A. Mittal, and S. Singh, “A critical review of HR analytics: visualization and bibliometric analysis approach,” Inf Discov Deliv, vol. 51, no. 3, pp. 267–282, Jul. 2023, doi: 10.1108/IDD-05-2022-0038. [Google Scholar]
- R. Shanmugavel et al., “Al-Mg-MoS2 Reinforced Metal Matrix Composites: Machinability Characteristics,” Materials, vol. 15, no. 13, Jul. 2022, doi: 10.3390/MA15134548. [CrossRef] [Google Scholar]
- D. N. Nguyen, M. P. Dang, S. Dixit, and T. P. Dao, “A design approach of bonding head guiding platform for die to wafer hybrid bonding application using compliant mechanism,” International Journal on Interactive Design and Manufacturing, 2022, doi: 10.1007/S12008-022-01019-4. [Google Scholar]
- V. S. Rana et al., “Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01456-9. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.