Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01174
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439201174
Published online 18 March 2024
  1. P. Dehghanian, B. Wang, and M. Tasdighi, “New Protection Schemes in Smarter Power Grids With Higher Penetration of Renewable Energy Systems,” Pathways to a Smarter Power System, pp. 317–342, Jan. 2019, doi: 10.1016/B978-0-08-102592-5.00011-9. [Google Scholar]
  2. H. Wang, Z. Huang, X. Zhang, X. Huang, X. wei Zhang, and B. Liu, “Intelligent power grid monitoring and management strategy using 3D model visual computation with deep learning,” Energy Reports, vol. 8, pp. 3636–3648, Nov. 2022, doi: 10.1016/j.egyr.2022.02.123. [CrossRef] [Google Scholar]
  3. “Intelligent Agents for Advanced Power System Protection Schemes – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Intelligent%20Agents%20for%20Advanced%20Power%20System%20Protection%20Schemes [Google Scholar]
  4. M. Azeroual et al., “Fault location and detection techniques in power distribution systems with distributed generation: Kenitra City (Morocco) as a case study,” Electric Power Systems Research, vol. 209, Aug. 2022, doi: 10.1016/j.epsr.2022.108026. [CrossRef] [Google Scholar]
  5. S. Baidya and C. Nandi, “A comprehensive review on DC Microgrid protection schemes,” Electric Power Systems Research, vol. 210, Sep. 2022, doi: 10.1016/j.epsr.2022.108051. [CrossRef] [Google Scholar]
  6. A. A. Shobole and M. Wadi, “Multiagent systems application for the smart grid protection,” Renewable and Sustainable Energy Reviews, vol. 149, Oct. 2021, doi: 10.1016/j.rser.2021.111352. [CrossRef] [Google Scholar]
  7. S. M. Walsh and D. M. Baechle, “The confluence of intelligent agents and materials to enable protection of humans in extreme and dangerous environments,” Robotic Systems and Autonomous Platforms, pp. 523–546, 2019, doi: 10.1016/B978-0-08-102260-3.00020-2. [Google Scholar]
  8. J. Xie, T. Li, and X. Wang, “A novel DT-based intelligent experiment method for complex industrial products,” Advanced Engineering Informatics, vol. 59, Jan. 2024, doi: 10.1016/j.aei.2023.102275. [Google Scholar]
  9. N. Voropai et al., “Intelligent control and protection in the Russian electric power system,” Application of Smart Grid Technologies: Case Studies in Saving Electricity, pp. 61–140, Jan. 2018, doi: 10.1016/B978-0-12-803128-5.00003-9. [Google Scholar]
  10. A. B. Mohammed, L. C. Fourati, and A. M. Fakhrudeen, “Comprehensive systematic review of intelligent approaches in UAV-based intrusion detection, blockchain, and network security,” Computer Networks, vol. 239, p. 110140, Feb. 2024, doi: 10.1016/J.COMNET.2023.110140. [CrossRef] [Google Scholar]
  11. I. AL-Wesabi et al., “Hybrid SSA-PSO based intelligent direct sliding-mode control for extracting maximum photovoltaic output power and regulating the DC-bus voltage,” Int J Hydrogen Energy, Jan. 2023, doi: 10.1016/j.ijhydene.2023.10.034. [Google Scholar]
  12. E. Abbaspour, B. Fani, E. Heydarian-Forushani, and A. Al-Sumaiti, “A multi-agent based protection in distribution networks including distributed generations,” Energy Reports, vol. 8, pp. 163–174, Dec. 2022, doi: 10.1016/j.egyr.2022.10.394. [CrossRef] [Google Scholar]
  13. Y. Mao et al., “Flexible wearable intelligent sensing system for wheelchair sports monitoring,” iScience, vol. 26, no. 11, Nov. 2023, doi: 10.1016/j.isci.2023.108126. [Google Scholar]
  14. T. Zhang, “An intelligent routing algorithm for energy prediction of 6G-powered wireless sensor networks,” Alexandria Engineering Journal, vol. 76, pp. 35–49, Aug. 2023, doi: 10.1016/j.aej.2023.06.038. [CrossRef] [Google Scholar]
  15. S. U. H. Bakhtiar et al., “Positive temperature coefficient materials for intelligent overload protection in the new energy era,” Materials Today, Dec. 2023, doi: 10.1016/j.mattod.2023.11.009. [Google Scholar]
  16. S. Kumar, A. Chopra, and M. Z. U. Haq, “EXPERIMENTAL INVESTIGATION ON MARBLE DUST, RICE HUSK ASH, AND FLY ASH BASED GEOPOLYMER BRICK”. [Google Scholar]
  17. A. Kumar, N. Mathur, V. S. Rana, H. Sood, and M. Nandal, “Sustainable effect of polycarboxylate ether based admixture: A meticulous experiment to hardened concrete,” Mater Today Proc, 2022. [Google Scholar]
  18. Md. Z. ul Haq, H. Sood, and R. Kumar, “Effect of using plastic waste on mechanical properties of fly ash based geopolymer concrete,” Mater Today Proc, 2022. [Google Scholar]
  19. Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [CrossRef] [Google Scholar]
  20. V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]
  21. V. S. Rana et al., “Correction: Assortment of latent heat storage materials using multi criterion decision making techniques in Scheffler solar reflector,” International Journal on Interactive Design and Manufacturing (IJIDeM), p. 1, 2023. [Google Scholar]
  22. M. Z. ul Haq, H. Sood, and R. Kumar, “SEM-Assisted Mechanistic Study: pH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete,” 2023. [Google Scholar]
  23. P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  24. M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
  25. Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
  26. L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [Google Scholar]
  27. Y. Kuppusamy et al., “Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/MA15103443. [Google Scholar]
  28. K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  29. K. Kumar et al., “Comparative Analysis of Waste Materials for Their Potential Utilization in Green Concrete Applications,” Materials, vol. 15, no. 12, Jun. 2022, doi: 10.3390/MA15124180. [Google Scholar]
  30. S. K. Samal et al., “3D-Printed Satellite Brackets: Materials, Manufacturing and Applications,” Crystals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/CRYST12081148. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.