Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01171
Number of page(s) 11
DOI https://doi.org/10.1051/matecconf/202439201171
Published online 18 March 2024
  1. S. Deep, S. Banerjee, S. Dixit, and N. I. Vatin, “Critical Factors Influencing the Performance of Highway Projects: Empirical Evaluation of Indian Projects,” Buildings, vol. 12, no. 6, Jun. 2022, doi: 10.3390/BUILDINGS12060849. [CrossRef] [Google Scholar]
  2. Y. Kuppusamy et al., “Artificial Neural Network with a Cross-Validation Technique to Predict the Material Design of Eco-Friendly Engineered Geopolymer Composites,” Materials, vol. 15, no. 10, May 2022, doi: 10.3390/MA15103443. [Google Scholar]
  3. K. Zheng Yang et al., “Application of coolants during tool-based machining – A review,” Ain Shams Engineering Journal, 2022, doi: 10.1016/J.ASEJ.2022.101830. [Google Scholar]
  4. K. Kumar et al., “Comparative Analysis of Waste Materials for Their Potential Utilization in Green Concrete Applications,” Materials, vol. 15, no. 12, Jun. 2022, doi: 10.3390/MA15124180. [Google Scholar]
  5. S. K. Samal et al., “3D-Printed Satellite Brackets: Materials, Manufacturing and Applications,” Crystals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/CRYST12081148. [Google Scholar]
  6. C. Shyamlal et al., “Corrosion Behavior of Friction Stir Welded AA8090-T87 Aluminum Alloy,” Materials, vol. 15, no. 15, Aug. 2022, doi: 10.3390/MA15155165. [CrossRef] [Google Scholar]
  7. G. Upadhyay et al., “Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties,” Metals (Basel), vol. 12, no. 8, Aug. 2022, doi: 10.3390/MET12081392. [CrossRef] [Google Scholar]
  8. P. Singh et al., “Development of performance-based models for green concrete using multiple linear regression and artificial neural network,” International Journal on Interactive Design and Manufacturing, 2023, doi: 10.1007/S12008-023-01386-6. [Google Scholar]
  9. M. Makwana et al., “Effect of Mass on the Dynamic Characteristics of Single– and Double-Layered Graphene-Based Nano Resonators,” Materials, vol. 15, no. 16, Aug. 2022, doi: 10.3390/MA15165551. [CrossRef] [Google Scholar]
  10. Y. Kaushik, V. Verma, K. K. Saxena, C. Prakash, L. R. Gupta, and S. Dixit, “Effect of Al2O3 Nanoparticles on Performance and Emission Characteristics of Diesel Engine Fuelled with Diesel–Neem Biodiesel Blends,” Sustainability (Switzerland), vol. 14, no. 13, Jul. 2022, doi: 10.3390/SU14137913. [Google Scholar]
  11. L. Das et al., “Determination of Optimum Machining Parameters for Face Milling Process of Ti6A14V Metal Matrix Composite,” Materials, vol. 15, no. 14, Jul. 2022, doi: 10.3390/MA15144765. [Google Scholar]
  12. M. Z. ul Haq et al., “Geopolymerization of Plastic Waste for Sustainable Construction: Unveiling Novel Opportunities in Building Materials,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01204. [Google Scholar]
  13. Md. Z. U. Haq, H. Sood, R. Kumar, and I. Merta, “Taguchi-optimized triple-aluminosilicate geopolymer bricks with recycled sand: A sustainable construction solution,” Case Studies in Construction Materials, vol. 20, p. e02780, 2024, doi: https://doi.org/10.1016/j.cscm.2023.e02780. [Google Scholar]
  14. V. Sharma and S. Singh, “Modeling for the use of waste materials (Bottom ash and fly ash) in soil stabilization,” Mater Today Proc, vol. 33, pp. 1610–1614, Jan. 2020, doi: 10.1016/J.MATPR.2020.05.569. [CrossRef] [Google Scholar]
  15. M. Z. ul Haq et al., “Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01201. [Google Scholar]
  16. K. Kumar et al., “Revolutionising Heat Treatment: Novel Strategies for Augmented Performance and Sustainability,” in E3S Web of Conferences, EDP Sciences, 2023, p. 01200. [Google Scholar]
  17. P. K. Chittoor and C. Bharatiraja, “Building integrated photovoltaic powered wireless drone charging system,” Solar Energy, vol. 252, pp. 163–175, Mar. 2023, doi: 10.1016/j.solener.2023.01.056. [CrossRef] [Google Scholar]
  18. A. Barolli, T. Oda, M. Ikeda, L. Barolli, F. Xhafa, and V. Loia, “Node placement for wireless mesh networks: Analysis of WMN-GA system simulation results for different parameters and distributions,” J Comput Syst Sci, vol. 81, no. 8, pp. 1496–1507, Dec. 2015, doi: 10.1016/j.jcss.2014.12.024. [CrossRef] [Google Scholar]
  19. E. Arribas, V. Mancuso, and V. Cholvi, “Optimizing fairness in cellular networks with mobile drone relays,” Computer Networks, vol. 224, Apr. 2023, doi: 10.1016/j.comnet.2023.109623. [CrossRef] [Google Scholar]
  20. N. A. Mohammed and M. Othman, “A load-balanced algorithm for Internet Gateway placement in Backbone Wireless Mesh Networks,” Future Generation Computer Systems, vol. 150, pp. 144–159, Jan. 2024, doi: 10.1016/j.future.2023.08.024. [CrossRef] [Google Scholar]
  21. R. Masroor, M. Naeem, and W. Ejaz, “Resource management in UAV-assisted wireless networks: An optimization perspective,” Ad Hoc Networks, vol. 121, Oct. 2021, doi: 10.1016/j.adhoc.2021.102596. [CrossRef] [Google Scholar]
  22. “Optimizing Wireless Charging Infrastructure Placement using Genetic Algorithms – Search | ScienceDirect.com.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.sciencedirect.com/search?qs=Optimizing%20Wireless%20Charging%20Infrastructure%20Placement%20using%20Genetic%20Algorithms [Google Scholar]
  23. S. Deb, X. Z. Gao, K. Tammi, K. Kalita, and P. Mahanta, “A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem,” Energy, vol. 220, Apr. 2021, doi: 10.1016/j.energy.2020.119645. [Google Scholar]
  24. A. K. Vamsi Krishna Reddy and K. Venkata Lakshmi Narayana, “Meta-heuristics optimization in electric vehicles –an extensive review,” Renewable and Sustainable Energy Reviews, vol. 160, May 2022, doi: 10.1016/j.rser.2022.112285. [CrossRef] [Google Scholar]
  25. R. Magán-Carrión, R. A. Rodríguez-Gómez, J. Camacho, and P. García-Teodoro, “Optimal relay placement in multi-hop wireless networks,” Ad Hoc Networks, vol. 46, pp. 23–36, Aug. 2016, doi: 10.1016/j.adhoc.2016.03.007. [CrossRef] [Google Scholar]
  26. M. A. Abdel-Malek and M. Azab, “UAV-fleet management for extended NextG emergency support infrastructure with QoS and cost aware,” Internet of Things, vol. 25, p. 101043, Apr. 2024, doi: 10.1016/J.IOT.2023.101043. [CrossRef] [Google Scholar]
  27. V. P. Raj and M. Duraipandian, “An energy-efficient cross-layer-based opportunistic routing protocol and partially informed sparse autoencoder for data transfer in wireless sensor network,” Journal of Engineering Research, Oct. 2023, doi: 10.1016/j.jer.2023.10.023. [Google Scholar]
  28. N. Mouhrim, A. El Hilali Alaoui, and J. Boukachour, “Pareto efficient allocation of an in-motion wireless charging infrastructure for electric vehicles in a multipath network,” Int J Sustain Transp, vol. 13, no. 6, pp. 419–432, Jul. 2019, doi: 10.1080/15568318.2018.1481242. [CrossRef] [Google Scholar]
  29. X. Wang, X. Mao, and H. Khodaei, “A multi-objective home energy management system based on internet of things and optimization algorithms,” Journal of Building Engineering, vol. 33, Jan. 2021, doi: 10.1016/j.jobe.2020.101603. [CrossRef] [Google Scholar]
  30. N. Fescioglu-Unver and M. Yıldız Aktaş, “Electric vehicle charging service operations: A review of machine learning applications for infrastructure Renewable and Sustainable Energy Reviews, vol. 188, Dec. 2023, doi: 10.1016/j.rser.2023.113873. [CrossRef] [Google Scholar]
  31. N. Mazumdar, A. Nag, and S. Nandi, “HDDS: Hierarchical Data Dissemination Strategy for energy optimization in dynamic wireless sensor network under harsh environments,” Ad Hoc Networks, vol. 111, Feb. 2021, doi: 10.1016/j.adhoc.2020.102348. [CrossRef] [Google Scholar]
  32. O. W. Khalid, N. A. M. Isa, and H. A. Mat Sakim, “Emperor penguin optimizer: A comprehensive review based on state-of-the-art meta-heuristic algorithms,” Alexandria Engineering Journal, vol. 63, pp. 487–526, Feb. 2023, doi: 10.1016/j.aej.2022.08.013. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.