Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01158
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202439201158
Published online 18 March 2024
  1. H. Sung, J. Ferlay, R. L. Siegel et al., “Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 71, no. 3, pp. 209–249, 2021. [CrossRef] [PubMed] [Google Scholar]
  2. K. Pogorelov, M. Riegler, S. L. Eskeland et al., “Efficient disease detection in gastrointestinal videos–global features versus neural networks,” Multimedia Tools and Applications, vol. 76, no. 21, pp. 22493–22525, 2017. [CrossRef] [Google Scholar]
  3. M. Khan, K. Muhammad, S. Wang et al., “Gastrointestinal diseases recognition: a framework of deep neural network and improved moth-crow optimization with dcca fusion,” Human-centric Computing and Information Sciences, vol. 12, 2022. [Google Scholar]
  4. V. Thambawita, D. Jha, H. L. Hammer et al., “An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification,” ACM Transactions on Computing for Healthcare, vol. 1, no. 3, pp. 1–29, 2020. [CrossRef] [Google Scholar]
  5. J.Yogapriya, V. Chandran, M. Sumithra, P. Anitha, P. Jenopaul, and C. Suresh Gnana Dhas, “Gastrointestinal tract disease classification from wireless endoscopy images using pretrained deep learning model,” Computational and Mathematical Methods in Medicine, vol. 2021, Article ID 5940433, 12 pages, 2021. [Google Scholar]
  6. Z. M. Lonseko, P. E. Adjei, W. Du et al., “Gastrointestinal disease classification in endoscopic images using attention-guided convolutional neural networks,” Applied Sciences, vol. 11, no. 23, Article ID 11136, 2021. [CrossRef] [Google Scholar]
  7. Dheir and S. A. Abu-Naser, “Classification of anomalies in gastrointestinal tract using deep learning,” International Journal of Academic Engineering Research, vol. 6, pp. 15–28, 2022. [Google Scholar]
  8. J. Wan, B. Chen, and Y. Yu, “Polyp detection from colorectum images by using attentive YOLOv5,” Diagnostics, vol. 11, no. 12, p. 2264, 2021. [CrossRef] [Google Scholar]
  9. Nogueira-Rodríguez, M. Reboiro-Jato, D. Glez-Peña, and H. López-Fernández, “Performance of convolutional neural networks for polyp localization on public colonoscopy image datasets,” Diagnostics, vol. 12, no. 4, p. 898, 2022. [CrossRef] [Google Scholar]
  10. E. H. Dulf, M. Bledea, T. Mocan, and L. Mocan, “Automatic detection of colorectal polyps using transfer learning,” Sensors, vol. 21, no. 17, p. 5704, 2021. [CrossRef] [Google Scholar]
  11. F. Mohammad and M. Al-Razgan, “Deep feature fusion and optimization-based approach for stomach disease classification,” Sensors, vol. 22, no. 7, p. 2801, 2022. [CrossRef] [Google Scholar]
  12. M. A. Khan, S. Kadry, M. Alhaisoni et al., “Computer-aided gastrointestinal diseases analysis from wireless capsule endoscopy: a framework of best features selection,” IEEE Access, vol. 8, pp. 132850–132859, 2020. [CrossRef] [Google Scholar]
  13. M. A. Khan, M. A. Khan, F. Ahmed et al., “Gastrointestinal diseases segmentation and classification based on duo-deep architectures,” Pattern Recognition Letters, vol. 131, pp. 193–204, 2020. [CrossRef] [Google Scholar]
  14. Ş. Öztürk and U. Özkaya, “Residual LSTM layered CNN for classification of gastrointestinal tract diseases,” Journal of Biomedical Informatics, vol. 113, Article ID 103638, 2021. [Google Scholar]
  15. E. Okimoto, N. Ishimura, K. Adachi, Y. Kinoshita, S. Ishihara, and T. Tada, “Application of convolutional neural networks for diagnosis of eosinophilic esophagitis based on endoscopic imaging,” Journal of Clinical Medicine, vol. 11, no. 9, p. 2529, 2022. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.