Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01127
Number of page(s) 20
DOI https://doi.org/10.1051/matecconf/202439201127
Published online 18 March 2024
  1. Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521, no. 7553, pp. 436–444 (2015). [CrossRef] [Google Scholar]
  2. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification with deep convolutional neural networks,’ Commun. ACM, vol. 60, no. 2, pp. 84–90(2017). [CrossRef] [Google Scholar]
  3. M. K. Islam, M. S. Ali, M. M. Ali, M. F. Haque, A. A. Das, M. M. Hossain, D. S. Duranta, and M. A. Rahman, ‘‘Melanoma skin lesions classification using deep convolutional neural network with transfer learning,’’ in Proc. 1st Int. Conf. Artif. Intell. Data Analytics (CAIDA)(2021). [Google Scholar]
  4. A. Ahmim, M. Derdour, and M. A. Ferrag, ‘‘An intrusion detection system based on combining probability predictions of a tree of classifiers,’ Int. J. Commun. Syst., vol. 31, no. 9, p. e3547(2018). [Google Scholar]
  5. A. Ahmim, L. Maglaras, M. A. Ferrag, M. Derdour, and H. Janicke, ‘A novel hierarchical intrusion detection system based on decision tree and rules-based models,’ in Proc. 15th Int. Conf. Distrib. Comput. Sensor Syst. (DCOSS), May 2019, pp. 228–233. [Google Scholar]
  6. Z. Dewa and L. A. Maglaras, ‘‘Data mining and intrusion detection systems,’ Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 1, pp. 1–10(2016). [Google Scholar]
  7. B. Stewart, L. Rosa, L. A. Maglaras, T. J. Cruz, M. A. Ferrag, P. Simoes, and H. Janicke, ‘‘A novel intrusion detection mechanism for SCADA systems which automatically adapts to network topology changes,’’ EAI Endorsed Trans. Ind. Netw. Intell. Syst., vol. 4, no. 10, p. e4(2017). [Google Scholar]
  8. [8] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, ‘‘Deep learning for cyber security intrusion detection: Approaches, datasets, and comparative study,’ J. Inf. Secur. Appl., vol. 50, Art. no. 102419(2020). [Google Scholar]
  9. [9] Y. Imrana, Y. Xiang, L. Ali, and Z. Abdul-Rauf, ‘A bidirectional LSTM deep learning approach for intrusion detection,’ Expert Syst. Appl., vol. 185, Art. no. 115524(2021). [Google Scholar]
  10. [10] A. A. Salih, S. Y. Ameen, S. R. Zeebaree, M. A. Sadeeq, S. F. Kak, N. Omar, I. M. Ibrahim, H. M. Yasin, Z. N. Rashid, and Z. S. Ageed, ‘‘Deep learning approaches for intrusion detection,’’ Asian J. Res. Comput. Sci., vol. 9, no. 4, pp. 50–64(2021). [CrossRef] [Google Scholar]
  11. [11] J. Azevedo and F. Portela, ‘‘Convolutional neural network—A practical case study,’’ in Proc. Int. Conf. Inf. Technol. Appl. Singapore: Springer, pp. 307–318(2012). [Google Scholar]
  12. [12] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),pp. 770–778(2016). [Google Scholar]
  13. [13] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, ‘‘How transferable are features in deep neural networks?’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 27, pp. 1–9(2014). [Google Scholar]
  14. [14] G. Awad, C. G. Snoek, A. F. Smeaton, and G. Quénot, ‘‘Trecvid semantic indexing of video: A 6-year retrospective,’’ ITE Trans. Media Technol. Appl., vol. 4, no. 3, pp. 187–208(2016). [Google Scholar]
  15. [15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking the inception architecture for computer vision,’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 2818–2826(2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.