Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01118
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202439201118
Published online 18 March 2024
  1. T. Janssen, “A linear quantile mixed regression model for prediction about airline ticket prices,”A Treatise on Electricity & Magnetism, Third Edition(2014) [Google Scholar]
  2. F. Vivek Farias and Yiwei Chen, “Robust Dynamic Pricing Among Strategic Customers,” Mathematic about Operations Research 43, 1119–1142(2018) [CrossRef] [Google Scholar]
  3. “Airline ticket price & demand prediction: A survey.,” Journal of King Saud University – Computer & Information Sciences, vol. 33, no. 4, pp. 375-391. Juhar Ahmed Abdella, Nazar Zaki, Khaled Shuaib, & Fahad Khan. (2021) [CrossRef] [Google Scholar]
  4. Anastasia Lantseva, Ksenia Mukhina, Anna Nikishova, Sergey Ivanov, and Konstantin Knyazkov, “Data-driven Modelling about Airlines Pricing,” Procedia Computer Science, vol.66, no. 2, pp. 267–276.(2015) [CrossRef] [Google Scholar]
  5. “Airfare prices prediction using machine learning techniques,” in 25th International Conference on Machine Learning, K. Tziridis, T. Kalampokas, G. A. Papakostas, and K. I..Diamantaras (2018) [Google Scholar]
  6. “A Bayesian Approach for Flight Fare Prediction Based on Kalman Filter,” in Progress in Advanced Computing & Intelligent Engineering, Singapore, pp. 191-203.A. Boruah, K. Baruah, B. Das, M. Das, and N. Gohain. (2019) [Google Scholar]
  7. William Groves and Maria Gini, “A regression model for predicting optimal purchase timing for airline tickets.,” Technical paper, University of Minnesota, Minneapolis, USA, paper number 11-025, (2011) [Google Scholar]
  8. “Flight price Detection Using Machine Learning,” in 5th International Conference on Intelligent Computing & Control Systems (ICICCS). D. Tanouz, R. R. Subramanian, D. Eswar, G. V. P. Reddy, A. R. Kumar, and C. V. N. M. Praneeth. (2021) [Google Scholar]
  9. “A Survey on Sentiment Analysis,” in 11th International Conference on Cloud Computing N. Akshith, G. N. Murthy, M. Vikas, S. Amara, and K. Balaji (2022) [Google Scholar]
  10. Syed Umar, Yerragudipadu Subbarayudu, K. Kiran Kumar, N. Bashwanth, “Designing of Dynamic Re-clustering Leach Protocol for Calculating Total Residual Time and Performance”,International Journal of Electrical and Computer Engineering (IJECE)Vol.7, No.3, June2017, pp. 1286~1292 ISSN: 2088-8708, DOI: 10.11591/ijece.v7i3.pp1286-1292 [Google Scholar]
  11. Yerragudipadu Subba Rayudu, R M Noorullah and C Praveen Kumar, Scribble Legalization Cryptographic Aspect Based On Data Access Control For Steam Count, VOL. 13, NO. 8, APRIL 2018 ISSN 1819-6608, “ARPN Journal of Engineering and Applied Sciences” ©2006-2018 Asian Research Publishing Network (ARPN). [Google Scholar]
  12. Subbarayudu Y, Reddy R.O. Anjaiah, P. “A study on user mobility in device to device (D2D) networks through distrubted catching”, IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPCSI 2017.2018 DOI: 10.1109/ICPCSI.2017.8391798 EID: 2-s2.0-85050095042, URL: http://www.scopus.com/inward/record.url?Eid=2-s2.0-85050095042&partnerid=MN8TOARS [Google Scholar]
  13. Subbarayudu Y. Rakesh, M. Lingappa, E. Umar, S., ” Overview of the new bioinformatics virus goes from the front of next generation sequencing in genomics based on datamining”, Proceedings of the 2017 International Conference on Intelligent Computing and Control Systems,2018, DOI: 10.1109/ICCONS.2017.8250670,EID: 2-s2.0-85047447491, URL:http://www.scopus.com/inward/record.url?Eid=2-s2.0-85047447491&partnerid=MN8TOARS [Google Scholar]
  14. “Subbarayudu Y. ” “Patil, S. ” “ Ramyasree, B. ” “ Praveen Kumar, C. ” “Geetha, G ”, Assort-EHR graph based semisupervised classification algorithm for mining health records, Journal of Advanced Research in Dynamical and Control Systems 2017 EID: 2-s2.0-85058439255 [Google Scholar]
  15. Umar, S., Sridevi, G., Subbarayudu Y., Nath, N.Y. “Datamining based multimode approach for estimating the risk under heart failure cases”, Journal of Theoretical and Applied Information Technology Volume 95, Issue 16, 31 August 2017, Pages 3879-3883 [Google Scholar]
  16. Yerragudipadu subbarayudu, alladi Sureshbabu “Distributed Multimodal Aspective on Topic Model Using Sentiment Analysis for Recognition of Public Health Surveillance” Expert Clouds and Applications, 16 July 2021, DOI: https://doi.org/10.1007/978-981-16-2126-0_38 Springer, Singapore Print ISBN 978-981-16-2125-3 Online ISBN 978-981-16-2126-0 [Google Scholar]
  17. Yerragudipadu Subbarayudu, Adithi Soppadandi, Shreya Vyamasani and Supriya Bandanadam1, The Distributed Deep Learning Paradigms for Detection of Weeds from Crops in Indian Agricultural Farms, E3S Web of Conferences 391, 01057 (2023) https://doi.org/10.1051/e3sconf/202339101057 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  18. Subbarayudu Yerragudipadu, Vijendar Reddy Gurram, Navya Sri Rayapudi, Bhavana Bingi, Likhitha Gollapalli1 and Ukritha peddapatlolla, An Efficient Novel Approach on Machine Learning Paradigmsfor Food Delivery Company through Demand Forecastıng in societal community, E3S Web of Conferences 391, 01089 (2023) https://doi.org/10.1051/e3sconf/202339101089 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  19. Yerragudipadu Subbarayudu, G Vijendar Reddy, M Vamsi Krishna Raj, K Uday, MD Fasiuddin, and P Vishal, An efficient novel approach to E-commerce retail price optimization through machine learning, E3S Web of Conferences 391, 01104 (2023) https://doi.org/10.1051/e3sconf/202339101104 ICMED-ICMPC 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  20. Subbarayudu, Y., Sureshbabu, A. (2023). A distributed densely connected convolutional network approach for enhanced recognition of health-related topics: A societal analysis case study. Ingénierie des Systèmes d’Information, Vol. 28, No. 3, pp. 677-684. https://doi.org/10.18280/isi.280317 [Google Scholar]
  21. P. Gopal Krihsna, Yerragudipadu Subbarayudu, S. Sai Siva Kumar, D. Naveen, Abhishek Srivastava and K. Thangamani “IoT Sensor-based sustainable smart home management for human needs through Micro Controller” Published online: 06 October 2023 DOI: https://doi.org/10.1051/e3sconf/202343001079 [Google Scholar]
  22. P. Gopal Krihsna, Yerragudipadu Subbarayudu, S. Sai Siva Kumar, D. Naveen, Abhishek Srivastava and K. Thangamani IoT Sensor-based sustainable smart home management for human needs through Micro Controller Published online: 06 October 2023,DOI: https://doi.org/10.1051/e3sconf/202343001079 [Google Scholar]
  23. P. Gopal Krihsna, Yerragudipadu Subbarayudu, K. Mythili Rao, V. Jyoshna, Jumaid Aman and G. Vijendar Reddy An Efficient, Novel, and Sustainable IoT-Based Approach for Attendance Detection through RFID Module and IR Sensor Published online: 06 October 2023 DOI: https://doi.org/10.1051/e3sconf/202343001096 [Google Scholar]
  24. Subbarayudu Yerragudipadu, Alladi Sureshbabu, ”The Evaluation of Distributed topic models for recognition of health-related topics in social media through Machine Learning Paradigms” International Journal of Intelligent Systems and Applications in Engineering (IJISAE), https://ijisae.orgISSN:2147-6799,2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.