Open Access
Issue
MATEC Web Conf.
Volume 392, 2024
International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024)
Article Number 01114
Number of page(s) 7
DOI https://doi.org/10.1051/matecconf/202439201114
Published online 18 March 2024
  1. Liu FL, Yu HY, Cong W, Wang G. Top-level design and pilot analysis of low-end CT scanners based on linear scanning for developing countries. Journal of X-ray science and technology. 2014. 22(5):673–86. 10.3233/XST-140453 [PubMed] [CrossRef] [Google Scholar] [Google Scholar]
  2. Wu WW, Quan C, Liu FL. Filtered Back-Projection Image Reconstruction Algorithm for Opposite Parallel Linear CT Scanning. Acta Optica Sinica. 2016. 10.3788/AOS201636.0911009 [CrossRef] [Google Scholar] [Google Scholar]
  3. Kong H, Yu HY. Analytic reconstruction approach for parallel translational computed tomography. Journal of X-ray science and technology. 2015. 23(2):213 10.3233/XST-150482 [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  4. Andersen AH, Kak AC. Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm. Ultrasonic Imaging: An International Journal. 1984. 6(1):81–94. 10.1016/0161-7346(84)90008-7 [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  5. Gordon R, Bender R, Herman GT. Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography. Journal of Theoretical Biology. 1970. 29(3):471–481. 10.1016/0022-5193(70)90109-8 [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  6. Mcgaffin MG, Fessler JA. Alternating Dual Updates Algorithm for X-ray CT Reconstruction on the GPU. IEEE Transactions on Computational Imaging. 2015. 1(3):186–199. 10.1109/TCI.2015.2479555 [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  7. Chun SY, Dewaraja YK, Fessler JA. Alternating Direction Method of Multiplier for Tomography with Nonlocal Regularizers. IEEE Transactions on Medical Imaging. 2014. 33(10):1960–1968. 10.1109/TMI.2014.2328660 [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  8. Madhu, Bhukya, M. Venu Gopala Chari, Ramdas Vankdothu, Arun Kumar Silivery, and Veerender Aerranagula. “Intrusion detection models for IOT networks via deep learning approaches.” Measurement: Sensors 25 (2023): 100641. [CrossRef] [Google Scholar]
  9. Madhu, Bhukya, and M. Venu Gopalachari. “Classification of the Severity of Attacks on Internet of Things Networks.” In Sentiment Analysis and Deep Learning: Proceedings of ICSADL 2022, pp. 411-424. Singapore: Springer Nature Singapore, 2023. [Google Scholar]
  10. Madhu, Bhukya, Sanjib Kumar Nayak, Veerender Aerranagula, E. Srinath, Mamidi Kiran Kumar, and Jitendra Kumar Gupta. ”IoT Network Attack Severity Classification.” In E3S Web of Conferences, vol. 430, p. 01152. EDP Sciences, 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  11. Madhu, Bhukya, Veerender Aerranagula, Riyaz Mahomad, V. Ravindernaik, K. Madhavi, and Gopal Krishna. ”Techniques of Machine Learning for the Purpose of Predicting Diabetes Risk in PIMA Indians.” In E3S Web of Conferences, vol. 430, p. 01151. EDP Sciences, 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  12. Silivery, Arun Kumar, Ram Mohan Rao Kovvur, Ramana Solleti, LK Suresh Kumar, and Bhukya Madhu. “A model for multi-attack classification to improve intrusion detection performance using deep learning approaches.” Measurement: Sensors (2023): 100924. [Google Scholar]
  13. Rakesh, S., Nagaratna P. Hegde, M. Venu Gopalachari, D. Jayaram, Bhukya Madhu, Mohd Abdul Hameed, Ramdas Vankdothu, and LK Suresh Kumar. “Moving object detection using modified GMM based background subtraction.” Measurement: Sensors 30 (2023): 100898. [CrossRef] [Google Scholar]
  14. Madhu, Bhukya, M. Venu Gopala Chari, Ramdas Vankdothu, Arun Kumar Silivery, and Veerender Aerranagula. “Intrusion detection models for IOT networks via deep learning approaches.” Measurement: Sensors 25 (2023): 100641. [CrossRef] [Google Scholar]
  15. Khan, Sarah, Quamrul Hassan, Kaushal Kumar, Saurav Dixit, Kshama Sharma, Vivek Kumar, Navdeep Dhaliwal, and Bhukya Madhu. ”Modelling the Impact of Road Dust on Air Pollution: A Sustainable System Dynamics Approach.” In E3S Web of Conferences, vol. 430, p. 01176. EDP Sciences, 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  16. Bhardwaj, Himanshi, Pooja Kapoor, Avnish Kumar, N. V. Ganapathi, and Bhukya Madhu. ”Incorporating Sustainability: A Comprehensive Review of Factors Influencing Consumer Acceptance of Mobile Wallets.” In E3S Web of Conferences, vol. 430, p. 01206. EDP Sciences, 2023. [CrossRef] [EDP Sciences] [Google Scholar]
  17. Wang CX, Zeng L, Guo YM, Zhang LL. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems and Imaging. vol. 11, no. 6, pp. 917–948, 2017. 10.3934/ipi.2017043 [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  18. Wang CX, Zeng L. Error bounds and stability in the L0 regularized for CT reconstruction from small projections. Inverse Problems and Imaging. vol. 10, no. 3, pp. 829–853, 2016. [Google Scholar [CrossRef] [Google Scholar]
  19. Wu WW, Zhang YB, Wang Q, Liu FL, Chen PJ, Yu HY. Low-dose spectral CT reconstruction using image gradient ℓ0–norm and tensor dictionary. Applied Mathematical Modelling. vol. 63, pp. 538–557, 2018. 10.1016/j.apm.2018.07.006 [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  20. Yu HY, Wang G. Compressed sensing based interior tomography. Phys. Med. Biol. vol. 54, no. 9, pp. 2791–2805, 2009. 10.1088/0031-9155/54/9/014 [PMC free article] [PubMed] [CrossRef] [Google Scholar] [CrossRef] [Google Scholar]
  21. Lauzier PT, Tang j, Chen GH. Prior image constrained compressed sensing: Implementation and performance evaluation. Medical Physics 39, 66–80 (2012). 10.1118/1.3666946 [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Google Scholar]
  22. Tumula S., Ramadevi Y., Padmalatha E., Kiran Kumar G., Venu Gopalachari M., Abualigah L., Chithaluru P., Kumar M., “An opportunistic energy-efficient dynamic self-configuration clustering algorithm in WSN-based IoT networks”, (2024) International Journal of Communication Systems, 37 (1), art. no. e5633, DOI:10.1002/dac.5633 [CrossRef] [Google Scholar]
  23. Rajender N., Gopalachari M.V. , “An efficient dimensionality reduction based on adaptive-GSM and transformer assisted classification for high dimensional data”, (2024) International Journal of Information Technology (Singapore), 16 (1), pp. 403 -416, DOI: 10.1007/s41870-023-01552-9 [CrossRef] [Google Scholar]
  24. Gopalachari M.V., Kolla M., Mishra R.K., Tasneem Z., “Design and Implementation of Brain Tumor Segmentation and Detection Using a Novel Woelfel Filter and Morphological Segmentation”,(2022) Complexity, 2022, art. no. 6985927, DOI:10.1155/2022/6985927 [Google Scholar]
  25. Kolla M., Mishra R.K., Zahoor Ul Huq S., Vijayalata Y., Gopalachari M.V., Siddiquee K., “CNN-Based Brain Tumor Detection Model Using Local Binary Pattern and Multilayered SVM Classifier”,(2022), Computational Intelligence and Neuroscience, 2022, art. no. 9015778, DOI: 10.1155/2022/9015778 [Google Scholar]
  26. Venu Gopalachari M., Gupta S., Rakesh S., Jayaram D., Venkateswara Rao P., “Aspectbased sentiment analysis on multi-domain reviews through word embedding”,(2023) Journal of Intelligent Systems, 32 (1), DOI: 10.1515/jisys-2023-0001 [CrossRef] [Google Scholar]
  27. Mukkamula V.G., Nangunuri L, “Location aware social networks user profiling using big data analytics”, (2017) International Journal of Intelligent Engineering and Systems, 10 (6), pp. 242 -249, DOI:10.22266/ijies2017.1231.26 [CrossRef] [Google Scholar]
  28. Gopalachari M.V., Sammulal P., “A hybrid approach to handle cold start in a recommender by exploiting latent factors”,(2016) International Journal of Applied Engineering Research, 11 (6), pp. 3905 –3909 [Google Scholar]
  29. Gopalachari M.V. , “DBT recommender: Improved trustworthiness of ratings through de-biasing tendency of users”, (2018) International Journal of Intelligent Engineering and Systems, 11 (2), pp. 85 -92, DOI: 10.22266/IJIES2018.0430.10 [CrossRef] [Google Scholar]
  30. Vatambeti R., Divya N.S., Jalla H.R., Gopalachari M.V. , Attack Detection Using a Lightweight Blockchain Based Elliptic Curve Digital Signature Algorithm in Cyber Systems,(2022) International Journal of Safety and Security Engineering, 12 (6), pp. 745 -753, DOI:10.18280/ijsse.120611. [CrossRef] [Google Scholar]
  31. Sammulal P., Venu Gopalachari M., “A personalized recommender system using conceptual dynamics”, (2017) Advances in Intelligent Systems and Computing, 507, pp. 211 -219, DOI: 10.1007/978-981-10-2471-9_21 [CrossRef] [Google Scholar]
  32. Prathi J.K., Raparthi P.K. , Gopalachari M.V., “Real-Time Aspect-Based Sentiment Analysis on Consumer Reviews”, (2020) Advances in Intelligent Systems and Computing, 1079, pp. 801 -810, DOI: 10.1007/978-981-15-1097-7_67 [Google Scholar]
  33. Venu Gopalachari M., Sammulal P., “Personalized collaborative filtering recommender system using domain knowledge”, (2014) International Conference on Computing and Communication Technologies, ICCCT 2014, art. no. 7066693, DOI:10.1109/ICCCT2.2014.7066693 [Google Scholar]
  34. Venu Gopalachari M., Sammulal P., “Hybrid recommender system with conceptualization and temporal preferences”, (2016) Advances in Intelligent Systems and Computing, 380, pp. 811 -819, DOI: 10.1007/978-81-322-2523-2_79 [CrossRef] [Google Scholar]
  35. Venu Gopalachari M., Sammulal P., “Personalized web page recommender system using integrated usage and content knowledge”, (2015) Proceedings of 2014 IEEE International Conference on Advanced Communication, Control and Computing Technologies, ICACCCT 2014, art. no. 7019261, pp. 1066 -1071, DOI:10.1109/ICACCCT.2014.7019261 [Google Scholar]
  36. Gopalachari M.V., Sammulal P., Babu A.V., “ Correlating scheduling and load balancing to achieve optimal performance from a cluster”,(2009) 2009 IEEE International Advance Computing Conference, IACC 2009, art. no. 4809029, pp. 320 -325, DOI: 10.1109/IADCC.2009.4809029 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.